人工智能-机器学习之多分类分析(项目实战二-鸢尾花的多分类分析)

Softmax回归听名字,依然好像是做回归任务的算法,但其实它是去做多分类任务的算法。

  1. 篮球比赛胜负是二分类,足球比赛胜平负就是多分类

  2. 识别手写数字0和1是二分类,识别手写数字0-9就是多分类

Softmax回归算法是一种用于多分类问题的机器学习算法。它可以帮助我们预测一个样本属于哪一类,比如预测一张照片中的动物是狗、猫还是鸟。

一、任务目标:

鸢尾花分类任务是一个经典的机器学习问题,通常用于演示和测试分类算法的性能。该任务的目标是根据鸢尾花的特征将其分为三个不同的品种,即山鸢尾(Setosa)、变色鸢尾(Versicolor)和维吉尼亚鸢尾(Virginica)。这个任务是一个多类别分类问题,其中每个样本都属于三个可能的类别之一。

二、数据集描述:鸢尾花分类任务使用的数据集通常是著名的鸢尾花数据集(Iris dataset)。该数据集包含了150个鸢尾花样本,每个样本有四个特征:萼片长度(Sepal Length)、萼片宽度(Sepal Width)、花瓣长度(Petal Length)和花瓣宽度(Petal Width)。每个样本还标有其所属的品种。

三、加载整个数据集

from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
​
#加载鸢尾花数据集
iris = datasets.load_iris()
x=iris.data
y=iris.target
​
print("多元的参数集是:")
print(x)
print("结果集是:")
print(y)

四、将数据集拆分为训练集和测试集,测试集占20%,训练集占80%

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)

五、创建一个逻辑回归的对象

#创建一个逻辑回归的对象,这里的逻辑回归会根据我们的数据决定是用二分类还是用多分类
lr=LogisticRegression()

六、使用训练集训练模型

lr.fit(x_train,y_train)

七、使用测试集进行结果的预测

y_pred=lr.predict(x_test)

八、打印模型的准确率

print("准确率:%.2f" %accuracy_score(y_test,y_pred))
多元的参数集是:
[[5.1 3.5 1.4 0.2][4.9 3.  1.4 0.2][4.7 3.2 1.3 0.2][4.6 3.1 1.5 0.2][5.8 2.7 5.1 1.9][6.8 3.2 5.9 2.3][6.7 3.3 5.7 2.5][6.7 3.  5.2 2.3][6.3 2.5 5.  1.9][6.5 3.  5.2 2. ][6.2 3.4 5.4 2.3][5.9 3.  5.1 1.8]]
结果集是:
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2]
准确率:0.97

注意:

1、mluti_class的参数,如果是ovr是进行二分类转换,如果是multinomial是进行softmax回归做多分类,由于目前我们的y值是单标签,要么是0,要么是1,要么是2,因此可以默认进行多分类。

# lr=LogisticRegression(multi_class='ovr')   #多分类转换成了多个二分类
# lr=LogisticRegression(multi_class='multinomial')   #Softmax回归做多分类

2、最大迭代次数:max_iter=1000,默认是执行100次收敛,调整参数100次。

如果不添加这个参数,可能会报如下错误:收敛的警告,迭代100次之后还没有达到完全的收敛,如果将参数改为1000,则精度会有所提升。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/892971.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Azure 100 学生订阅下,使用 Docker 在 Ubuntu VPS 上部署 Misskey 的详细教程

什么是 Docker 和 Misskey? Docker 是一个开源的应用容器引擎,它可以让开发者打包他们的应用以及依赖包到一个轻量级、可移植的容器中,然后发布到任何流行的 Linux 机器上,包括物理机、虚拟机、云服务等。使用 Docker&#xff0c…

DeepSeek-v3在训练和推理方面的优化

1. 基础架构:MLA,大幅减少了KV cache大小。(计算量能不能减少?) 2. 基础架构:MoE,同等参数量(模型的”能力“)下,训练、推理的计算量大幅减少。 3. MoE的load…

python-44-嵌入式数据库SQLite和DuckDB

文章目录 1 SQLite1.1 世界上最流行的数据库1.1 SQLite简介1.2 插入语句1.3 查询数据1.4 更新数据1.5 删除数据2 DuckDB2.1 DuckDB简介2.2 DuckDB与Python结合使用2.2.1 创建表2.2.2 分析语句2.2.3 导出为parquet文件2.3 Windows中使用DuckDB3 参考附录1 SQLite Python的一个特…

MySQL8数据库全攻略:版本特性、下载、安装、卸载与管理工具详解

大家好,我是袁庭新。 MySQL作为企业项目中的主流数据库,其5.x和8.x版本尤为常用。本文将详细介绍MySQL 8.x的特性、下载、安装、服务管理、卸载及管理工具,旨在帮助用户更好地掌握和使用MySQL数据库。 1.MySQL版本及下载 企业项目中使用的…

C 语言运算符的优先级和结合性

运算符的结合性和优先级 优先级运算符描述结合性1()[]->.函数调用、数组下标、结构体 / 联合体成员通过指针访问、结构体 / 联合体成员访问从左到右2!~ (前缀)-- (前缀) (一元)- (一元)* (间接寻址)& (取地址)sizeof(type)逻辑非、按位取反、前缀自增、前缀自减、一元正…

centos 7 Mysql服务

将此服务器配置为 MySQL 服务器,创建数据库为 hubeidatabase,将登录的root密码设置为Qwer1234。在库中创建表为 mytable,在表中创建 2 个用户,分别为(xiaoming,2010-4-1,女,male&…

紫光无人机AI飞控平台介绍

随着无人机技术的迅猛发展,无人机飞控平台的智能化需求不断提升。紫光无人机AI飞控平台作为一款创新型产品,为用户提供了从飞行控制到任务管理的一站式解决方案,尤其在AI实时识别和事件分析方面具有显著优势。本文将介绍平台的核心功能、技术…

Vue3 Element-Plus el-tree 右键菜单组件

参考代码&#xff1a;实现Vue3Element-Plus(tree、table)右键菜单组件 这篇文章的代码确实能用&#xff0c;但是存在错误&#xff0c;修正后的代码&#xff1a; <template><div style"text-align: right"><el-icon size"12" color"#…

【机器学习实战入门】有趣的Python项目:使用OpenCV进行性别和年龄检测

Gender and Age Detection Python 项目 首先,向您介绍用于此高级 Python 项目的性别和年龄检测中的术语: 什么是计算机视觉? 计算机视觉是一门让计算机能够像人类一样观察和识别数字图像和视频的学科。它面临的挑战大多源于对生物视觉有限的了解。计算机视觉涉及获取、处…

AutoAlign实体对齐方法的详细工作原理和在大规模知识图谱中的应用

AutoAlign是一种全自动且高效的知识图谱对齐方法&#xff0c;其工作原理主要基于大型语言模型&#xff08;LLM&#xff09;&#xff0c;如ChatGPT和Claude&#xff0c;通过构建谓词邻近图和实体嵌入模块来实现实体和谓词的自动对齐。这种方法不需要人工标注种子对齐&#xff0c…

【2025最新】国内中文版 ChatGPT镜像网站整理合集,GPT最新模型4o1,4o,4o-mini分类区别,镜像站是什么

1.快速导航 原生中转型镜像站点 立即Chat支持GPT4、4o以及o1,canvs等&#xff0c;同步官网功能 AIChat.com 支持最新4O 2.两者对比 官网立即Chat访问难度需要魔法直接访问支付手段国际支付国内支付封禁策略检测节点&#xff0c;随时封禁不会封禁价格每月140元订阅费用每年70元…

事务机制及Spring事务管理

事务概览 事务是一组操作的集合&#xff0c;它是一个不可分割的工作单位。 事务会将所有的操作作为一个整体一起向系统提交或撤销操作请求&#xff0c;换句话说&#xff1a;这些操作要么同时成功、要么同时失败。 具体案例 我们先看一个需求&#xff1a;现在有两张数据库表&…

java请编写程序,分别定义8种基本数据类型的变量,并打印变量的值。

为什么输出的是总和&#xff0c;而不是单个的换行的8行输出 public static void main(String[] args) {byte a 100;short b12345;int c 654321;long d 123456789;float e 1.5f;double f 123.456;boolean g false;char h a;System.out.println(a\nb\nc\nd\ne\nf\nString.valueO…

CCLINKIE转ModbusTCP网关,助机器人“掀起”工业智能的“惊涛骇浪”

以下是一个稳联技术CCLINKIE转ModbusTCP网关&#xff08;WL-CCL-MTCP&#xff09;连接三菱PLC与机器人的配置案例&#xff1a;设备与软件准备设备&#xff1a;稳联技术WL-CCL-MTCP网关、三菱FX5UPLC、支持ModbusTCP协议的机器人、网线等。 稳联技术ModbusTCP转CCLINKIE网关&…

CVPR 2024 图像处理方向总汇(图像去噪、图像增强、图像分割和图像恢复等)

1、Image Progress(图像处理) 去鬼影 Generating Content for HDR Deghosting from Frequency View去阴影 HomoFormer: Homogenized Transformer for Image Shadow Removal去模糊 Unsupervised Blind Image Deblurring Based on Self-EnhancementLatency Correction for E…

python管理工具:conda部署+使用

python管理工具&#xff1a;conda部署使用 一、安装部署 1、 下载 - 官网下载&#xff1a; https://repo.anaconda.com/archive/index.html - wget方式&#xff1a; wget -c https://repo.anaconda.com/archive/Anaconda3-2023.03-1-Linux-x86_64.sh2、 安装 在conda文件的…

python爬虫入门(理论)

python爬虫 学习网站 一、准备 环境搭建 requests beautifulsoup4 selenium 爬虫架构 URL管理器&#xff1a;管理URL&#xff0c;存储已爬取或待爬取的URL 网页下载器&#xff1a;破解网页&#xff0c;进行下载 网页解析器&#xff1a;对网页的HTML样式、连接的URL等进…

windows-本地部署Git仓库-安装Gitea

windows-本地部署Git仓库-安装Gitea 初始化MysQL数据库下载运行后关闭配置服务初始化打开防火墙指定端口入站规则 初始化MysQL数据库 create database gitea character set utf8mb4; 下载 运行后关闭 配置服务 初始化 打开防火墙指定端口入站规则

CV 图像处理基础笔记大全(超全版哦~)!!!

一、图像的数字化表示 像素 数字图像由众多像素组成&#xff0c;是图像的基本构成单位。在灰度图像中&#xff0c;一个像素用一个数值表示其亮度&#xff0c;通常 8 位存储&#xff0c;取值范围 0 - 255&#xff0c;0 为纯黑&#xff0c;255 为纯白。例如&#xff0c;一幅简单的…

Android-目前最稳定和高效的UI适配方案

谈到适配&#xff0c;首先需要介绍几个基本单位&#xff1a; 1、密度无关像素&#xff08;dp&#xff09;&#xff1a; 含义&#xff1a;density-independent pixel&#xff0c;叫dp或dip&#xff0c;与终端上的实际物理像素点无关 单位&#xff1a;dp&#xff0c;可以保证在…