OpenCV相机标定与3D重建(55)通用解决 PnP 问题函数solvePnPGeneric()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

根据3D-2D点对应关系找到物体的姿态。
cv::solvePnPGeneric 是 OpenCV 中一个更为通用的函数,用于解决 PnP 问题。它能够返回多个可能的姿态解(旋转和平移向量),并且支持多种不同的求解方法。这在某些情况下特别有用,例如当存在多解时,或者需要评估不同解的质量。

  • 此函数返回所有可能的解的列表(一个解是一对<旋转向量, 平移向量>),具体取决于输入点的数量和选择的方法:

  • P3P 方法(SOLVEPNP_P3P, SOLVEPNP_AP3P):需要 3 或 4 个输入点。如果有 3 个输入点,返回的解的数量可以在 0 到 4 之间。
    -SOLVEPNP_IPPE:输入点必须 >= 4 且物体点必须共面。返回 2 个解。

  • SOLVEPNP_IPPE_SQUARE:适用于标记姿态估计的特殊情况。输入点的数量必须是 4,并且返回 2 个解。物体点必须按以下顺序定义:

    • 点 0: [-squareLength / 2, squareLength / 2, 0]
    • 点 1: [ squareLength / 2, squareLength / 2, 0]
    • 点 2: [ squareLength / 2, -squareLength / 2, 0]
    • 点 3: [-squareLength / 2, -squareLength / 2, 0]
  • 对于所有其他标志,输入点的数量必须 >= 4,且物体点可以是任意配置。仅返回 1 个解。

函数原型


int cv::solvePnPGeneric
(InputArray 	objectPoints,InputArray 	imagePoints,InputArray 	cameraMatrix,InputArray 	distCoeffs,OutputArrayOfArrays 	rvecs,OutputArrayOfArrays 	tvecs,bool 	useExtrinsicGuess = false,SolvePnPMethod 	flags = SOLVEPNP_ITERATIVE,InputArray 	rvec = noArray(),InputArray 	tvec = noArray(),OutputArray 	reprojectionError = noArray() 
)		

参数

  • 参数 objectPoints:物体坐标空间中的物体点数组,格式为 Nx3 的单通道或 1xN/Nx1 的三通道,其中 N 是点的数量。也可以传递 vector。
    -参数imagePoints:对应的图像点数组,格式为 Nx2 的单通道或 1xN/Nx1 的双通道,其中 N 是点的数量。也可以传递 vector。
    -参数cameraMatrix:输入的相机内参矩阵 A = [ f x 0 c x 0 f y c y 0 0 1 ] A = \begin{bmatrix}f_x & 0 & c_x \\0 & f_y & c_y \\0 & 0 & 1\end{bmatrix} A= fx000fy0cxcy1
    -参数distCoeffs:输入的畸变系数向量 (k1, k2, p1, p2[, k3[, k4, k5, k6[, s1, s2, s3, s4[, τx, τy]]]]),包含 4、5、8、12 或 14 个元素。如果该向量为空,则假设畸变为零。
    -参数rvecs:输出的旋转向量数组(见 Rodrigues),与 tvecs 一起使用,将模型坐标系中的点变换到相机坐标系中。
    -参数tvecs:输出的平移向量数组。
    -参数useExtrinsicGuess:仅用于 SOLVEPNP_ITERATIVE 方法。如果为 true(1),函数会使用提供的 rvec 和 tvec 值作为旋转和平移向量的初始近似值,并进一步优化它们。
    -参数flags:解决 PnP 问题的方法,详见 calib3d_solvePnP_flags。
    -参数rvec:当标志为 SOLVEPNP_ITERATIVE 且 useExtrinsicGuess 设置为 true 时,用于初始化迭代 PnP 精化算法的旋转向量。
    -参数tvec:当标志为 SOLVEPNP_ITERATIVE 且 useExtrinsicGuess 设置为 true 时,用于初始化迭代 PnP 精化算法的平移向量。
    -参数reprojectionError:可选的重投影误差向量,即输入图像点和用估计的姿态投影的 3D 物体点之间的均方根误差 RMSE = ∑ i N ( y i ^ − y i ) 2 N \text{RMSE} = \sqrt{\frac{\sum_{i}^{N} \left ( \hat{y_i} - y_i \right )^2}{N}} RMSE=NiN(yi^yi)2

  • 关于如何使用 solvePnP 进行平面增强现实的一个示例可以在 opencv_source_code/samples/python/plane_ar.py 找到。

  • 如果你使用的是 Python:

    • Numpy 数组切片不能作为输入,因为 solvePnP 需要连续的数组(在版本 2.4.9 的 modules/calib3d/src/solvepnp.cpp 文件大约第 55 行通过 cv::Mat::checkVector() 断言强制要求)。
    • P3P 算法要求图像点位于形状为 (N,1,2) 的数组中,因为它调用了 undistortPoints(在版本 2.4.9 的 modules/calib3d/src/solvepnp.cpp 文件大约第 75 行),这需要双通道信息。
    • 因此,给定一些数据 D = np.array(…),其中 D.shape = (N,M),为了使用其子集作为例如 imagePoints,必须有效地将其复制到一个新数组中:imagePoints = np.ascontiguousarray(D[:,:2]).reshape((N,1,2))。
  • 方法 SOLVEPNP_DLS 和 SOLVEPNP_UPNP 不能使用,因为当前实现不稳定,有时会给出完全错误的结果。如果你传递了这两个标志中的一个,则会使用 SOLVEPNP_EPNP 方法代替。

  • 在一般情况下,最少需要 4 个点。
    对于 SOLVEPNP_P3P 和 SOLVEPNP_AP3P 方法,必须使用恰好 4 个点(前 3 个点用于估计 P3P 问题的所有解,最后一个点用于保留最小化重投影误差的最佳解)。

  • 使用 SOLVEPNP_ITERATIVE 方法且 useExtrinsicGuess=true 时,最少需要 3 个点(3 个点足以计算姿态,但最多有 4 个解)。初始解应接近全局解以收敛。

  • 使用 SOLVEPNP_IPPE 时,输入点必须 >= 4 且物体点必须共面。

  • 使用 SOLVEPNP_IPPE_SQUARE 时,这是一个适用于标记姿态估计的特殊情况。输入点的数量必须是 4。物体点必须按以下顺序定义:

    • 点 0: [-squareLength / 2, squareLength / 2, 0]
    • 点 1: [ squareLength / 2, squareLength / 2, 0]
    • 点 2: [ squareLength / 2, -squareLength / 2, 0]
    • 点 3: [-squareLength / 2, -squareLength / 2, 0]

代码示例


#include <iostream>
#include <opencv2/opencv.hpp>
#include <vector>using namespace cv;
using namespace std;int main()
{// 假设我们有一个已知的 3D 点集 (例如一个正方形的四个角)std::vector< Point3f > objectPoints = { Point3f( -1.0f, -1.0f, 0.0f ), Point3f( 1.0f, -1.0f, 0.0f ), Point3f( 1.0f, 1.0f, 0.0f ), Point3f( -1.0f, 1.0f, 0.0f ) };// 对应的 2D 图像点 (这些点是从图像中检测到的特征点)std::vector< Point2f > imagePoints = { Point2f( 594.0f, 487.0f ), Point2f( 673.0f, 487.0f ), Point2f( 673.0f, 552.0f ), Point2f( 594.0f, 552.0f ) };// 相机内参矩阵 (假设已知)Mat cameraMatrix = ( Mat_< double >( 3, 3 ) << 718.856, 0, 607.1928, 0, 718.856, 185.2157, 0, 0, 1 );// 畸变系数 (假设已知)Mat distCoeffs = Mat::zeros( 5, 1, CV_64F );  // 如果没有畸变或忽略畸变,则可以是零矩阵// 初始化输出变量std::vector< Mat > rvecs, tvecs;Mat reprojectionError;// 调用 solvePnPGeneric 函数int solutionsFound = solvePnPGeneric( objectPoints, imagePoints, cameraMatrix, distCoeffs, rvecs, tvecs, false, SOLVEPNP_ITERATIVE, noArray(), noArray(), reprojectionError );if ( solutionsFound > 0 ){cout << "Number of solutions found: " << solutionsFound << endl;for ( int i = 0; i < solutionsFound; ++i ){cout << "\nSolution " << i + 1 << ":\n";cout << "Rotation Vector:\n" << rvecs[ i ] << "\nTranslation Vector:\n" << tvecs[ i ] << endl;// 可选:将旋转向量转换为旋转矩阵以更好地理解结果Mat rotationMatrix;Rodrigues( rvecs[ i ], rotationMatrix );cout << "Rotation Matrix:\n" << rotationMatrix << endl;}if ( !reprojectionError.empty() ){cout << "Reprojection Error: " << reprojectionError.at< double >( 0 ) << endl;}}else{cout << "solvePnPGeneric failed to find any solution." << endl;}return 0;
}

运行结果

Number of solutions found: 1Solution 1:
Rotation Vector:
[0.2895361443049176;0.01328548677652798;-0.008684530349597173]
Translation Vector:
[0.6665924885943908;8.493287223698232;18.23641869746051]
Rotation Matrix:
[0.999874917527441, 0.01047321277960457, 0.01185162915241468;-0.006653461772789516, 0.9583398410008748, -0.2855529383439369;-0.01434854508064377, 0.2854383663148514, 0.9582896526048779]
Reprojection Error: 5.21212e-315

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/892669.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UE5 打包项目

UE5 打包项目 flyfish 通过 “文件”->“打开项目”&#xff0c;然后在弹出的对话框中选择项目文件&#xff08;通常是以.uproject为后缀的文件&#xff09; 选择目标平台&#xff1a; 在 UE5 主界面中&#xff0c;找到 “平台”&#xff08;Platforms&#xff09;。根据…

1. Doris分布式环境搭建

一. 环境准备 本次测试集群采用3台机器hadoop1、hadoop2、hadoop3, Frontend和Backend部署在同一台机器上&#xff0c;Frontend部署3台组成高可用&#xff0c;Backend部署3个节点&#xff0c;组成3副本存储。 主机IP操作系统FrontendBackendhadoop1192.168.47.128Centos7Foll…

win10电脑 定时关机

win10电脑 定时关机 https://weibo.com/ttarticle/p/show?id2309405110707766296723 二、使用任务计划程序设置定时关机打开任务计划程序&#xff1a; 按下“Win S”组合键&#xff0c;打开搜索框。 在搜索框中输入“任务计划程序”&#xff0c;然后点击搜索结果中的“任务…

day07_Spark SQL

文章目录 day07_Spark SQL课程笔记一、今日课程内容二、Spark SQL函数定义&#xff08;掌握&#xff09;1、窗口函数2、自定义函数背景2.1 回顾函数分类标准:SQL最开始是_内置函数&自定义函数_两种 2.2 自定义函数背景 3、Spark原生自定义UDF函数3.1 自定义函数流程&#x…

Hadoop3.x 万字解析,从入门到剖析源码

&#x1f496; 欢迎来到我的博客&#xff01; 非常高兴能在这里与您相遇。在这里&#xff0c;您不仅能获得有趣的技术分享&#xff0c;还能感受到轻松愉快的氛围。无论您是编程新手&#xff0c;还是资深开发者&#xff0c;都能在这里找到属于您的知识宝藏&#xff0c;学习和成长…

Java 实现 Elasticsearch 查询当前索引全部数据

Java 实现 Elasticsearch 查询当前索引全部数据 需求背景通常情况Java 实现查询 Elasticsearch 全部数据写在最后 需求背景 通常情况下&#xff0c;Elasticsearch 为了提高查询效率&#xff0c;对于不指定分页查询条数的查询语句&#xff0c;默认会返回10条数据。那么这就会有…

Elasticsearch ES|QL 地理空间索引加入纽约犯罪地图

可以根据地理空间数据连接两个索引。在本教程中&#xff0c;我将向你展示如何通过混合邻里多边形和 GPS 犯罪事件坐标来创建纽约市的犯罪地图。 安装 如果你还没有安装好自己的 Elasticsearch 及 Kibana 的话&#xff0c;请参考如下的链接来进行安装。 如何在 Linux&#xff0…

C#学习笔记 --- 简单应用

1.operator 运算符重载&#xff1a;使自定义类可以当做操作数一样进行使用。规则自己定。 2.partial 分部类&#xff1a; 同名方法写在不同位置&#xff0c;可以当成一个类使用。 3.索引器&#xff1a;使自定义类可以像数组一样通过索引值 访问到对应的数据。 4.params 数…

【Flink】Flink内存管理

Flink内存整体结构图&#xff1a; JobManager内存管理 JVM 进程总内存(Total Process Memory)Flink总内存(Total Flink Memory)&#xff1a;JVM进程总内存减去JVM Metaspace(元空间)和JVM Overhead(运行时开销)上图解释&#xff1a; JVM进程总内存为2G;JVM运行时开销(JVM Overh…

MYSQL8创建新用户报错:You have an error in your SQL syntax;check...

本文所用——MYSQL版本&#xff1a;8.0.25 baidu都是直接创建新用户并赋权&#xff0c;如下&#xff1a; GRANT ALL PRIVILEGES ON *.* TO 用户名% IDENTIFIED BY 密码 WITH GRANT OPTION;但是我用的MYSQL版本它就不行&#xff0c;会报错&#xff01; 经查阅资料发现——MY…

力扣经典练习题之198.打家劫舍

今天继续给大家分享一道力扣的做题心得今天这道题目是198.打家劫舍,这是一道非常经典的问题,在动态规划中经常考到这类问题,题目如下: 题目链接:198.打家劫舍 1,题目分析 首先此题就是给我们了一个数组,代表可以偷的房屋中的对应的金额,我们是一个小偷,一次可以偷很多…

万物互联的背后:MCU嵌入式硬件的奇幻之旅

文章背景&#xff1a;嵌入式硬件是什么&#xff1f; 你可能听说过嵌入式硬件&#xff0c;却总觉得它像是实验室里神秘的玩意儿。其实&#xff0c;它就在我们身边——从你手上的智能手表到车里的倒车雷达&#xff0c;无一不是嵌入式硬件的“杰作”。想象一块小小的电路板&#x…

LabVIEW数据库管理系统

LabVIEW数据库管理系统&#xff08;DBMS&#xff09;是一种集成了数据库技术与数据采集、控制系统的解决方案。通过LabVIEW的强大图形化编程环境&#xff0c;结合数据库的高效数据存储与管理能力&#xff0c;开发人员可以实现高效的数据交互、存储、查询、更新和报告生成。LabV…

如何在 Linux、MacOS 以及 Windows 中打开控制面板

控制面板不仅仅是一系列图标和菜单的集合&#xff1b;它是通往优化个人计算体验的大门。通过它&#xff0c;用户可以轻松调整从外观到性能的各种参数&#xff0c;确保他们的电脑能够完美地适应自己的需求。无论是想要提升系统安全性、管理硬件设备&#xff0c;还是简单地改变桌…

python 轮廓 获取环形区域

目录 效果图&#xff1a; 代码&#xff1a; 效果图&#xff1a; 代码&#xff1a; import cv2 import numpy as np# 读取图像 image cv2.imread(rE:\project\jijia\tools_jijia\img_tools\ground_mask.jpg, cv2.IMREAD_GRAYSCALE) # 二值化图像 # 二值化图像 _, binary cv…

Clickhouse基础(一)

数据存储的目录&#xff0c;在存储数据时是先经过压缩后再存储的&#xff0c;压缩效率很高 操作命令&#xff1a; sudo clickhouse start sudo clickhouse restart sudo clickhouse status进入clickhouse clickhouse-client -mCREATE TABLE db_13.t_assist (modelId UInt64,…

基于spingbott+html+Thymeleaf的24小时智能服务器监控平台设计与实现

博主介绍&#xff1a;硕士研究生&#xff0c;专注于信息化技术领域开发与管理&#xff0c;会使用java、标准c/c等开发语言&#xff0c;以及毕业项目实战✌ 从事基于java BS架构、CS架构、c/c 编程工作近16年&#xff0c;拥有近12年的管理工作经验&#xff0c;拥有较丰富的技术架…

从 SQL 语句到数据库操作

1. SQL 语句分类 数据定义语言 DDL &#xff1a; 用于定义或修改数据库中的结构&#xff0c;如&#xff1a;创建、修改、删除数据库对象。create、drop alter 数据操作语言 DML &#xff1a; 用于添加、删除、更新数据库中的数据。select、insert alter、drop 数据控制语言 D…

Excel中SUM求和为0?难道是Excel有Bug!

大家好&#xff0c;我是小鱼。 在日常工作中有时会遇到这样的情况&#xff0c;对Excel表格数据进行求和时&#xff0c;结果竟然是0&#xff0c;很多小伙伴甚至都怀疑是不是Excel有Bug&#xff01;其实&#xff0c;在WPS的Excel表格中数据求和&#xff0c;结果为0无法正确求和的…

【简博士统计学习方法】第2章:3. 感知机——学习算法之对偶形式:算法解说

3. 感知机——学习算法之对偶形式&#xff1a;算法解说 3.4 对偶形式 在原始形式中&#xff0c;若 ( x i , y i ) (x_i,y_i) (xi​,yi​)为误分类点&#xff0c;可如下更新参数&#xff1a; w ← w η y i x i ; b ← b η y i w \leftarrow w\eta y_{i} x_{i} ; \quad b …