毕业项目推荐:基于yolov8/yolov5/yolo11的动物检测识别系统(python+卷积神经网络)

文章目录

  • 概要
  • 一、整体资源介绍
    • 技术要点
    • 功能展示:
      • 功能1 支持单张图片识别
      • 功能2 支持遍历文件夹识别
      • 功能3 支持识别视频文件
      • 功能4 支持摄像头识别
      • 功能5 支持结果文件导出(xls格式)
      • 功能6 支持切换检测到的目标查看
  • 二、数据集
  • 三、算法介绍
    • 1. YOLOv8 概述
      • 简介
    • 2. YOLOv5 概述
      • 简介
    • 3. YOLO11 概述
      • YOLOv11:Ultralytics 最新目标检测模型
  • 🌟 四、模型训练步骤
  • 🌟 五、模型评估步骤
  • 🌟 六、训练结果
  • 🌟完整代码

往期经典回顾

项目项目
基于yolov8的车牌检测识别系统基于yolov8/yolov5的钢铁缺陷检测系统
基于yolov8的人脸表情检测识别系统基于深度学习的PCB板缺陷检测系统
基于yolov8/yolov5的茶叶等级检测系统基于yolov8/yolov5的农作物病虫害检测识别系统
基于yolov8/yolov5的交通标志检测识别系统基于yolov8/yolov5的课堂行为检测识别系统
基于yolov8/yolov5的海洋垃圾检测识别系统基于yolov8/yolov5的垃圾检测与分类系统
基于yolov8/yolov5的行人摔倒检测识别系统基于yolov8/yolov5的草莓病害检测识别系统

概要

本文将详细介绍如何以官方yolov8yolov5``yolov11为主干,实现对动物的检测识别,且利用PyQt5设计了两种简约的系统UI界面。在界面中,您可以选择自己的视频文件、图片文件进行检测。此外,您还可以更换自己训练的主干模型,进行自己数据的检测。

我们的系统界面不仅外观优美,而且具备出色的检测精度和强大的功能。它支持多目标实时检测,并允许您自由选择感兴趣的检测目标。

yolov8/yolov5界面如下
在这里插入图片描述

yolo11界面如下 在这里插入图片描述

关键词:动物检测;目标检测;深度学习;特征融合;注意力机制;卷积神经网络

在这里插入图片描述

一、整体资源介绍

项目中所用到的算法模型和数据集等信息如下:

算法模型:
    yolov8yolov8 + SE注意力机制yolov5yolov5 + SE注意力机制yolo11yolo11 + SE注意力机制

数据集:
    网上下载的数据集,格式都已转好,可直接使用。

以上是本套代码算法的简单说明,添加注意力机制是本套系统的创新点

技术要点

  • OpenCV:主要用于实现各种图像处理和计算机视觉相关任务。
  • Python:采用这种编程语言,因其简洁易学且拥有大量丰富的资源和库支持。
  • 数据增强技术: 翻转、噪点、色域变换,mosaic等方式,提高模型的鲁棒性。

功能展示:

部分核心功能如下:

  • 功能1: 支持单张图片识别
  • 功能2: 支持遍历文件夹识别
  • 功能3: 支持识别视频文件
  • 功能4: 支持摄像头识别
  • 功能5: 支持结果文件导出(xls格式)
  • 功能6: 支持切换检测到的目标查看

功能1 支持单张图片识别

系统支持用户选择图片文件进行识别。通过点击图片选择按钮,用户可以选择需要检测的图片,并在界面上查看所有识别结果。该功能的界面展示如下图所示:
在这里插入图片描述
在这里插入图片描述

功能2 支持遍历文件夹识别

系统支持选择整个文件夹进行批量识别。用户选择文件夹后,系统会自动遍历其中的所有图片文件,并将识别结果实时更新显示在右下角的表格中。该功能的展示效果如下图所示:
在这里插入图片描述
在这里插入图片描述

功能3 支持识别视频文件

在许多情况下,我们需要识别视频中的目标。因此,系统设计了视频选择功能。用户点击视频按钮即可选择待检测的视频,系统将自动解析视频并逐帧识别多个目标,同时将识别结果记录在右下角的表格中。以下是该功能的展示效果:
在这里插入图片描述
在这里插入图片描述

功能4 支持摄像头识别

在许多场景下,我们需要通过摄像头实时识别目标。为此,系统提供了摄像头选择功能。用户点击摄像头按钮后,系统将自动调用摄像头并进行实时识别,识别结果会即时记录在右下角的表格中。
在这里插入图片描述

功能5 支持结果文件导出(xls格式)

本系统还添加了对识别结果的导出功能,方便后续查看,目前支持导出xls数据格式,功能展示如下:

在这里插入图片描述

功能6 支持切换检测到的目标查看

在这里插入图片描述
在这里插入图片描述

二、数据集

提供全面、结构化的数据集,它不仅包含了丰富的类别,而且已经细致地划分为训练集、验证集和测试集,以满足不同阶段的模型训练需求。而且数据集的格式,可直接支持YOLO训练,无需额外的格式转换工作。
个人在coco数据集里提取的,大概2.5万张,包含以下类别

在这里插入图片描述

部分数据样式如下:

在这里插入图片描述

三、算法介绍

1. YOLOv8 概述

简介

YOLOv8算法的核心特性和改进如下:

  • 全新SOTA模型
    YOLOv8 提供了全新的最先进(SOTA)的模型,包括P5 640P6 1280分辨率的目标检测网络,同时还推出了基于YOLACT的实例分割模型。与YOLOv5类似,它提供了N/S/M/L/X五种尺度的模型,以满足不同场景的需求。
  • Backbone
    骨干网络和Neck部分参考了YOLOv7 ELAN的设计思想。
    YOLOv5的C3结构替换为梯度流更丰富的C2f结构
    针对不同尺度的模型,调整了通道数,使其更适配各种任务需求。
    在这里插入图片描述
    网络结构如下:
    在这里插入图片描述

相比之前版本,YOLOv8对模型结构进行了精心微调,不再是“无脑”地将同一套参数应用于所有模型,从而大幅提升了模型性能。这种优化使得不同尺度的模型在面对多种场景时都能更好地适应。

然而,新引入的C2f模块虽然增强了梯度流,但其内部的Split等操作对特定硬件的部署可能不如之前的版本友好。在某些场景中,C2f模块的这些特性可能会影响模型的部署效率

2. YOLOv5 概述

简介

YOLOV5有YOLOv5n,YOLOv5s,YOLOv5m,YOLOV5l、YOLO5x五个版本。这个模型的结构基本一样,不同的是deth_multiole模型深度和width_multiole模型宽度这两个参数。就和我们买衣服的尺码大小排序一样,YOLOV5n网络是YOLOV5系列中深度最小,特征图的宽度最小的网络。其他的三种都是在此基础上不断加深,不断加宽。不过最常用的一般都是yolov5s模型。

在这里插入图片描述
本系统采用了基于深度学习的目标检测算法——YOLOv5。作为YOLO系列算法中的较新版本,YOLOv5在检测的精度和速度上相较于YOLOv3和YOLOv4都有显著提升。它的核心理念是将目标检测问题转化为回归问题,简化了检测过程并提高了性能。

YOLOv5引入了一种名为SPP (Spatial Pyramid Pooling)的特征提取方法。SPP能够在不增加计算量的情况下,提取多尺度特征,从而显著提升检测效果。

在检测流程中,YOLOv5首先通过骨干网络对输入图像进行特征提取,生成一系列特征图。然后,对这些特征图进行处理,生成检测框和对应的类别概率分数,即每个检测框内物体的类别和其置信度

YOLOv5的特征提取网络采用了CSPNet (Cross Stage Partial Network)结构。它将输入特征图分成两部分,一部分通过多层卷积处理,另一部分进行直接下采样,最后再将两部分特征图进行融合。这种设计增强了网络的非线性表达能力,使其更擅长处理复杂背景和多样化物体的检测任务。

在这里插入图片描述

3. YOLO11 概述

YOLOv11:Ultralytics 最新目标检测模型

YOLOv11 是 Ultralytics 公司在 2024 年推出的 YOLO 系列目标检测模型的最新版本。以下是对 YOLOv11 的具体介绍:

主要特点

  1. 增强的特征提取

    • 采用改进的骨干和颈部架构,如在主干网络中引入了 c2psa 组件,并将 c2f 升级为 c3k2
    • c3k 允许用户自定义卷积模块的尺寸,提升了灵活性。
    • c2psa 通过整合 psa(位置敏感注意力机制)来增强模型的特征提取效能。
    • 颈部网络采用了 pan 架构,并集成了 c3k2 单元,有助于从多个尺度整合特征,并优化特征传递的效率。
  2. 针对效率和速度优化

    • 精细的架构设计和优化的训练流程,在保持准确性和性能最佳平衡的同时,提供更快的处理速度。
    • 相比 YOLOv10,YOLOv11 的延迟降低了 25%-40%,能够达到每秒处理 60 帧 的速度,是目前最快的目标检测模型之一。
  3. 更少的参数,更高的准确度

    • YOLOv11mCOCO 数据集上实现了比 YOLOv8m 更高的 mAP,参数减少了 22%,提高了计算效率,同时不牺牲准确度。
  4. 跨环境的适应性

    • 可无缝部署在 边缘设备云平台 和配备 NVIDIA GPU 的系统上,确保最大的灵活性。
  5. 支持广泛的任务范围

    • 支持多种计算机视觉任务,包括 目标检测实例分割图像分类姿态估计定向目标检测(OBB)

架构改进

  1. 主干网络

    • 引入了 c2psa 组件,并将 c2f 升级为 c3k2
    • c3k 支持用户自定义卷积模块尺寸,增强灵活性。
    • c2psa 整合了 psa(位置敏感注意力机制),提升特征提取效能。
  2. 颈部网络

    • 采用 pan 架构,并集成了 c3k2 单元,帮助从多个尺度整合特征并优化特征传递效率。
  3. 头部网络

    • YOLOv11 的检测头设计与 YOLOv8 大致相似。
    • 在分类(cls)分支中,采用了 深度可分离卷积 来增强性能。

性能优势

  1. 精度提升

    • COCO 数据集上取得了显著的精度提升:
      • YOLOv11x 模型的 mAP 得分高达 54.7%
      • 最小的 YOLOv11n 模型也能达到 39.5%mAP 得分
    • 与前代模型相比,精度有明显进步。
  2. 速度更快

    • 能够满足实时目标检测需求

🌟 四、模型训练步骤

  1. 使用pycharm打开代码,找到train.py打开,示例截图如下:
    在这里插入图片描述

  2. 修改 model_yaml 的值,根据自己的实际情况修改,想要训练 yolov8s模型 就 修改为 model_yaml = yaml_yolov8s, 训练 添加SE注意力机制的模型就修改为 model_yaml = yaml_yolov8_SE

  3. 修改data_path 数据集路径,我这里默认指定的是traindata.yaml 文件,如果训练我提供的数据,可以不用改

  4. 修改 model.train()中的参数,按照自己的需求和电脑硬件的情况更改

    # 文档中对参数有详细的说明
    model.train(data=data_path,             # 数据集imgsz=640,                  # 训练图片大小epochs=200,                 # 训练的轮次batch=2,                    # 训练batchworkers=0,                  # 加载数据线程数device='0',                 # 使用显卡optimizer='SGD',            # 优化器project='runs/train',       # 模型保存路径name=name,                  # 模型保存命名)
    
  5. 修改traindata.yaml文件, 打开 traindata.yaml 文件,如下所示:
    在这里插入图片描述
    在这里,只需修改 path 的值,其他的都不用改动(仔细看上面的黄色字体),我提供的数据集默认都是到 yolo 文件夹,设置到 yolo 这一级即可,修改完后,返回 train.py 中,执行train.py

  6. 打开 train.py ,右键执行。
    在这里插入图片描述

  7. 出现如下类似的界面代表开始训练了
    在这里插入图片描述

  8. 训练完后的模型保存在runs/train文件夹下
    在这里插入图片描述


🌟 五、模型评估步骤

  1. 打开val.py文件,如下图所示:
    在这里插入图片描述

  2. 修改 model_pt 的值,是自己想要评估的模型路径

  3. 修改 data_path ,根据自己的实际情况修改,具体如何修改,查看上方模型训练中的修改步骤

  4. 修改 model.val()中的参数,按照自己的需求和电脑硬件的情况更改

    model.val(data=data_path,           # 数据集路径imgsz=300,                # 图片大小,要和训练时一样batch=4,                  # batchworkers=0,                # 加载数据线程数conf=0.001,               # 设置检测的最小置信度阈值。置信度低于此阈值的检测将被丢弃。iou=0.6,                  # 设置非最大抑制 (NMS) 的交叉重叠 (IoU) 阈值。有助于减少重复检测。device='0',               # 使用显卡project='runs/val',       # 保存路径name='exp',               # 保存命名)
    
  5. 修改完后,即可执行程序,出现如下截图,代表成功(下图是示例,具体以自己的实际项目为准。)
    在这里插入图片描述

  6. 评估后的文件全部保存在在 runs/val/exp... 文件夹下
    在这里插入图片描述


🌟 六、训练结果

我们每次训练后,会在 run/train 文件夹下出现一系列的文件,如下图所示:
在这里插入图片描述

   如果大家对于上面生成的这些内容(confusion_matrix.png、results.png等)不清楚是什么意思,可以在我的知识库里查看这些指标的具体含义,示例截图如下:

在这里插入图片描述

🌟完整代码

   如果您希望获取博文中提到的所有实现相关的完整资源文件(包括测试图片、视频、Python脚本、UI文件、训练数据集、训练代码、界面代码等),这些文件已被全部打包。以下是完整资源包的截图

在这里插入图片描述

您可以通过下方演示视频视频简介部分进行获取:

演示视频:
基于深度学习的动物检测识别系统(v8)
基于深度学习的动物检测识别系统(v5)
基于深度学习的动物检测识别系统(yolo11)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/892222.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

xtu oj 1614 数字(加强版)

输出格式# 每行输出一个样例的结果&#xff0c;为一个整数。 样例输入# 3 1 10 101 样例输出# 1 2 3 解题思路&#xff1a;这个题不要想复杂了&#xff0c;很容易超时。 首先需要注意的点&#xff0c;n<10的10000次方&#xff0c;用int或者long long都会爆&#xff0c;所…

了解RabbitMQ:强大的开源消息队列中间件

在现代分布式系统中&#xff0c;消息队列&#xff08;Message Queue&#xff0c;简称MQ&#xff09;作为一种重要的组件&#xff0c;承担着上下游消息传递和通信的重任。其中&#xff0c;RabbitMQ作为一款流行的开源消息队列中间件&#xff0c;凭借其高可用性、可扩展性和易用性…

这是什么操作?强制迁移?GitLab 停止中国区用户访问

大家好&#xff0c;我是鸭鸭&#xff01; 全球知名代码托管平台 GitLab 发布通告&#xff0c;宣布不再为位于中国大陆、香港及澳门地区的用户提供访问服务&#xff0c;并且“贴心”建议&#xff0c;可以访问极狐 GitLab。 极狐 GitLab 是一家中外合资公司&#xff0c;宣称获得…

第二届 Sui 游戏峰会将于 3 月 18 日在旧金山举行

3 月中旬&#xff0c;Sui 基金会和 Mysten Labs 将共同举办第二届 Sui 游戏峰会&#xff08;Sui Gaming Summit&#xff09;&#xff0c;这是一个专注于 Sui 游戏平台的 GDC 周边活动。此次峰会将与旧金山的年度游戏开发者大会&#xff08;GDC&#xff0c;Game Developers Conf…

易支付二次元网站源码及部署教程

易支付二次元网站源码及部署教程 引言 在当今数字化时代&#xff0c;二次元文化逐渐成为年轻人生活中不可或缺的一部分。为了满足这一庞大用户群体的需求&#xff0c;搭建一个二次元主题网站显得尤为重要。本文将为您详细介绍易支付二次元网站源码的特点及其部署教程&#xf…

计算机毕业设计hadoop+spark知网文献论文推荐系统 知识图谱 知网爬虫 知网数据分析 知网大数据 知网可视化 预测系统 大数据毕业设计 机器学习

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 作者简介&#xff1a;Java领…

LabVIEW四旋翼飞行器姿态监测系统

四旋翼飞行器姿态监测系统是一个集成了高度、速度、俯仰角与滚转角数据采集与分析的系统&#xff0c;提高飞行器在复杂环境中的操作精确度与安全性。系统利用LabVIEW平台与硬件传感器相结合&#xff0c;实现实时数据处理与显示&#xff0c;有效地提升了四旋翼飞行器的监测与控制…

3D机器视觉的类型、应用和未来趋势

3D相机正在推动机器视觉市场的增长。很多制造企业开始转向自动化3D料箱拣选&#xff0c;专注于使用3D视觉和人工智能等先进技术来简化操作并减少开支。 预计3D相机将在未来五年内推动全球机器视觉市场&#xff0c;这得益于移动机器人和机器人拣选的强劲增长。到 2028 年&#…

JavaFX基础之环境配置,架构,FXML

文章目录 1 JavaFX1.1 简介1.2 环境准备1.2.1 手动管理依赖1.2.2 maven或Gradle管理 1.3 JavaFX 架构1.3.1 JavaFX 架构图1.3.2 JavaFX组件1.3.2.1 舞台1.3.2.2 场景1.3.2.3 控件1.3.2.4 布局1.3.2.5 图表1.3.2.6 2D图形1.3.2.7 3D图形1.3.2.8 声音1.3.2.9 视频 1.4 简单使用1.…

php命名空间

什么是命名空间 从广义上来说&#xff0c;命名空间是一种封装事物的方法&#xff0c;在很多地方都可以见到这种抽象概念。 例如&#xff0c;在操作系统中目录用来将相关文件分组&#xff0c;对于目录中的文件来说&#xff0c;它就扮演了命名空间的角色。 具体举个例子&#xf…

【Unity3D】导出Android项目以及Java混淆

Android Studio 下载文件归档 | Android Developers Android--混淆配置&#xff08;比较详细的混淆规则&#xff09;_android 混淆规则-CSDN博客 Unity版本&#xff1a;2019.4.0f1 Gradle版本&#xff1a;5.6.4&#xff08;或5.1.1&#xff09; Gradle Plugin版本&#xff…

腾讯云AI代码助手编程挑战赛-每日一句

一、作品简介 “每日一句”是一个基于Python的图形用户界面&#xff08;GUI&#xff09;应用程序&#xff0c;旨在为用户提供随机的中英文名言警句。它利用腾讯云AI代码助手辅助开发&#xff0c;为用户带来便捷、高效的阅读体验。 二、技术架构 1. 编程语言&#xff1a;使用P…

【AI工具】PDFMathTranslate安装使用

用了一天时间&#xff0c;安装并使用了PDFMathTranslate这款PDF文档翻译工具。 PDFMathTranslate是能够完整保留排版的 PDF 文档全文双语翻译项目&#xff0c;之前使用文档翻译的时候&#xff0c;对于论文这种类型的文章&#xff0c;由于图表和公式太多&#xff0c;文档翻译经常…

conda 批量安装requirements.txt文件

conda 批量安装requirements.txt文件中包含的组件依赖 conda install --yes --file requirements.txt #这种执行方式&#xff0c;一遇到安装不上就整体停止不会继续下面的包安装。 下面这条命令能解决上面出现的不执行后续包的问题&#xff0c;需要在CMD窗口执行&#xff1a; 点…

网络安全图谱以及溯源算法

​ 本文提出了一种网络攻击溯源框架&#xff0c;以及一种网络安全知识图谱&#xff0c;该图由六个部分组成&#xff0c;G <H&#xff0c;V&#xff0c;A&#xff0c;E&#xff0c;L&#xff0c;S&#xff0c;R>。 1|11.知识图 ​ 网络知识图由六个部分组成&#xff0c…

上汽乘用车研发流程

目的 最近刚入职主机厂&#xff0c;工作中所提到各个阶段名称与之前在供应商那边不一致&#xff0c;概念有点模糊&#xff0c;所以打算学习了解一番 概念 术语 EP: enginerring prototype car 工程样车 Mule Car: 骡子车 Simulator Car&#xff1a;模拟样车 PPV&#xff1a;…

封装/前线修饰符/Idea项目结构/package/impore

目录 1. 封装的情景引入 2. 封装的体现 3. 权限修饰符 4. Idea 项目结构 5. package 关键字 6. import 关键字 7. 练习 程序设计&#xff1a;高内聚&#xff0c;低耦合&#xff1b; 高内聚&#xff1a;将类的内部操作“隐藏”起来&#xff0c;不需要外界干涉&#xff1b…

计算机网络 (23)IP层转发分组的过程

一、IP层的基本功能 IP层&#xff08;Internet Protocol Layer&#xff09;是网络通信模型中的关键层&#xff0c;属于OSI模型的第三层&#xff0c;即网络层。它负责在不同网络之间传输数据包&#xff0c;实现网络间的互联。IP层的主要功能包括寻址、路由、分段和重组、错误检测…

【W800】UART 的使用与问题

1.开发环境 OS: Windows 11开发板&#xff1a;海凌科 HLK-W800-KIT-PROSDK: W80X_SDK_v1.00.10IDE: CSKY Development Kit 2.UART 使用 在 SDK 中创建文件 uart_test.h 和 uart_test.c&#xff0c;然后在 CDK 项目中添加这两个文件&#xff0c;CDK 会自动 include 头文件。 …

万界星空科技质量管理QMS系统具体功能介绍

一、什么是QMS系统&#xff0c;有什么价值&#xff1f; 1、QMS 系统即质量管理系统&#xff08;Quality Management System&#xff09;。 它是一套用于管理和控制企业产品或服务质量的集成化体系。 2、QMS 系统的价值主要体现在以下几个方面&#xff1a; 确保产品质量一致性…