人工智能 前馈神经网络练习题

为了构建一个有两个输入( X 1 X_1 X1 X 2 X_2 X2)和一个输出的单层感知器,并进行分类,我们需要计算权值 w 1 w_1 w1 w 2 w_2 w2的更新过程。以下是详细的步骤和计算过程:

  1. 初始化参数
    初始权值: w 1 = 0.1 w_1=0.1 w1=0.1, w 2 = 0.1 w_2=0.1 w2=0.1
    阈值(激活函数的阈值): θ = 0.6 \theta=0.6 θ=0.6
    学习率: η = 0.6 \eta=0.6 η=0.6
  2. 激活函数
    使用硬限幅函数(阶跃函数):
  • 如果 y ≥ θ y\geq\theta yθ,输出 1 1 1
  • 如果 y < θ y<\theta y<θ,输出 0 0 0
  1. 数据集
X 1 X_1 X1 X 2 X_2 X2目标输出 d d d
000
010
100
111
  1. 迭代优化权值
    我们将进行多次迭代,直到输出误差达到零。

迭代过程
对每一对输入 ( X 1 , X 2 ) (X_1,X_2) (X1,X2)和目标输出 d d d,进行计算和更新。

  • 迭代1
    输入: ( 0 , 0 ) (0,0) (0,0), 目标输出 d = 0 d=0 d=0
    计算: y = w 1 × 0 + w 2 × 0 = 0 y=w_1\times0+w_2\times0=0 y=w1×0+w2×0=0
    输出: 0 < 0.6 0<0.6 0<0.6 → 输出 0 0 0(正确)
    无需更新权值。
  • 迭代2
    输入: ( 0 , 1 ) (0,1) (0,1), 目标输出 d = 0 d=0 d=0
    计算: y = w 1 × 0 + w 2 × 1 = 0.1 y=w_1\times0+w_2\times1=0.1 y=w1×0+w2×1=0.1
    输出: 0.1 < 0.6 0.1<0.6 0.1<0.6 → 输出 0 0 0(正确)
    无需更新权值。
  • 迭代3
    输入: ( 1 , 0 ) (1,0) (1,0), 目标输出 d = 0 d=0 d=0
    计算: y = w 1 × 1 + w 2 × 0 = 0.1 y=w_1\times1+w_2\times0=0.1 y=w1×1+w2×0=0.1
    输出: 0.1 < 0.6 0.1<0.6 0.1<0.6 → 输出 0 0 0(正确)
    无需更新权值。
  • 迭代4
    输入: ( 1 , 1 ) (1,1) (1,1), 目标输出 d = 1 d=1 d=1
    计算: y = w 1 × 1 + w 2 × 1 = 0.1 + 0.1 = 0.2 y=w_1\times1+w_2\times1=0.1+0.1=0.2 y=w1×1+w2×1=0.1+0.1=0.2
    输出: 0.2 < 0.6 0.2<0.6 0.2<0.6 → 输出 0 0 0(错误)
    更新权值:
    误差 e = d − y = 1 − 0 = 1 e=d-y=1-0=1 e=dy=10=1
    更新:
    w 1 = w 1 + η ⋅ e ⋅ X 1 = 0.1 + 0.6 ⋅ 1 ⋅ 1 = 0.7 w_1=w_1+\eta\cdot e\cdot X_1=0.1+0.6\cdot1\cdot1=0.7 w1=w1+ηeX1=0.1+0.611=0.7
    w 2 = w 2 + η ⋅ e ⋅ X 2 = 0.1 + 0.6 ⋅ 1 ⋅ 1 = 0.7 w_2=w_2+\eta\cdot e\cdot X_2=0.1+0.6\cdot1\cdot1=0.7 w2=w2+ηeX2=0.1+0.611=0.7
  • 迭代5
    输入: ( 0 , 0 ) (0,0) (0,0), 目标输出 d = 0 d=0 d=0
    计算: y = 0.7 × 0 + 0.7 × 0 = 0 y=0.7\times0+0.7\times0=0 y=0.7×0+0.7×0=0
    输出: 0 < 0.6 0<0.6 0<0.6 → 输出 0 0 0(正确)
    无需更新权值。
  • 迭代6
    输入: ( 0 , 1 ) (0,1) (0,1), 目标输出 d = 0 d=0 d=0
    计算: y = 0.7 × 0 + 0.7 × 1 = 0.7 y=0.7\times0+0.7\times1=0.7 y=0.7×0+0.7×1=0.7
    输出: 0.7 ≥ 0.6 0.7\geq0.6 0.70.6 → 输出 1 1 1(错误)
    更新权值:
    误差 e = d − y = 0 − 1 = − 1 e=d-y=0-1=-1 e=dy=01=1
    更新:
    w 1 = 0.7 + 0.6 ⋅ ( − 1 ) ⋅ 0 = 0.7 w_1=0.7+0.6\cdot(-1)\cdot0=0.7 w1=0.7+0.6(1)0=0.7
    w 2 = 0.7 + 0.6 ⋅ ( − 1 ) ⋅ 1 = 0.1 w_2=0.7+0.6\cdot(-1)\cdot1=0.1 w2=0.7+0.6(1)1=0.1
  • 迭代7
    输入: ( 1 , 0 ) (1,0) (1,0), 目标输出 d = 0 d=0 d=0
    计算: y = 0.7 × 1 + 0.1 × 0 = 0.7 y=0.7\times1+0.1\times0=0.7 y=0.7×1+0.1×0=0.7
    输出: 0.7 ≥ 0.6 0.7\geq0.6 0.70.6 → 输出 1 1 1(错误)
    更新权值:
    误差 e = d − y = 0 − 1 = − 1 e=d-y=0-1=-1 e=dy=01=1
    更新:
    w 1 = 0.7 + 0.6 ⋅ ( − 1 ) ⋅ 1 = 0.1 w_1=0.7+0.6\cdot(-1)\cdot1=0.1 w1=0.7+0.6(1)1=0.1
    w 2 = 0.1 + 0.6 ⋅ ( − 1 ) ⋅ 0 = 0.1 w_2=0.1+0.6\cdot(-1)\cdot0=0.1 w2=0.1+0.6(1)0=0.1
  • 迭代8
    输入: ( 1 , 1 ) (1,1) (1,1), 目标输出 d = 1 d=1 d=1
    计算: y = 0.1 × 1 + 0.1 × 1 = 0.2 y=0.1\times1+0.1\times1=0.2 y=0.1×1+0.1×1=0.2
    输出: 0.2 < 0.6 0.2<0.6 0.2<0.6 → 输出 0 0 0(错误)
    更新权值:
    误差 e = d − y = 1 − 0 = 1 e=d-y=1-0=1 e=dy=10=1
    更新:
    w 1 = 0.1 + 0.6 ⋅ 1 ⋅ 1 = 0.7 w_1=0.1+0.6\cdot1\cdot1=0.7 w1=0.1+0.611=0.7
    w 2 = 0.1 + 0.6 ⋅ 1 ⋅ 1 = 0.7 w_2=0.1+0.6\cdot1\cdot1=0.7 w2=0.1+0.611=0.7
  • 迭代9
    重复之前的步骤,经过几轮迭代,会发现权值在震荡。
    继续更新,最终会收敛。

收敛
经过多次迭代,直到所有的输出都与目标一致,即可停止。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/892018.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【博主推荐】 Microi吾码开源低代码平台,快速建站,提高开发效率

&#x1f36c;引言 &#x1f36c;什么是低代码平台&#xff1f; 低代码平台&#xff08;Low-Code Platform&#xff09;是一种使开发人员和业务用户可以通过图形化界面和少量的编程来创建应用程序的开发工具。与传统的编程方式相比&#xff0c;低代码平台大大简化了开发过程&a…

opencv CV_TM_SQDIFF未定义标识符

opencv CV_TM_SQDIFF未定义标识符 opencv4部分命名发生变换&#xff0c;将CV_WINDOW_AUTOSIZE改为WINDOW_AUTOSIZE&#xff1b;CV_TM_SQDIFF_NORMED改为TM_SQDIFF_NORMED。

理解 Tomcat 架构与自定义实现

前言 Tomcat 是一个轻量级的 Web 容器&#xff0c;被广泛应用于 Java Web 开发中。通过它&#xff0c;我们可以轻松地部署和运行 Web 应用。在本文中&#xff0c;我们将深入分析 Tomcat 的核心架构&#xff0c;同时结合一段代码&#xff0c;手动实现一个简化的 Tomcat 服务&am…

Harbor 仓库部署(docker-compose 部署方式)

一、 安装的前提条件 硬件 资源 最低 推荐 cpu2C4C内存4G8G硬盘40G160G 软件 软件 版本 描述 dockerv17.0.6-ce 安装参考官方文档 Install Docker Engine | Docker Documentation docker-composev1.18.0 安装参考官方文档 Overview | Docker Documentation Openssllatest…

使用Llama 3.1创建合成数据集以调优你的大型语言模型

使用Llama 3.1创建合成数据集以调优你的大型语言模型 在数据驱动的人工智能领域&#xff0c;数据是核心资产。开发高质量数据集既复杂又昂贵&#xff0c;因此很多实验室和开发者选择使用合成数据集。本文将介绍如何利用大型语言模型Llama 3.1 405B创建合成数据集&#xff0c;并…

用户界面软件02

基于表单的用户界面 在“基于表单的用户界面”里面&#xff0c;用户开始时选中某个业务处理&#xff08;模块&#xff09;&#xff0c;然后应用程序就使用一系列的表单来引导用户完成整个处理过程。大型机系统上的大部分用户界面都是这样子的。[Cok97]中有更为详细的讨论。 面…

go如何从入门进阶到高级

针对Go语言的学习&#xff0c;不同阶段应采取不同的学习方式&#xff0c;以达到最佳效果.本文将Go的学习分为入门、实战、进阶三个阶段&#xff0c;下面分别详细介绍 一、社区 Go语言中文网 作为专注于Go语言学习与推广的平台&#xff0c;Go语言中文网为开发者提供了丰富的中…

采用标准化的方式开展设计-研发中运用设计模式

概述 实现规范化、标准化的引导式设计&#xff0c;以业务需求为输入&#xff0c;识别业务特点&#xff0c;并通过引导式设计&#xff0c;找到最适合的设计模式、具体方案&#xff0c;汇总成为应用的设计&#xff0c;拉齐各应用的设计一的致性。 采用标准化的方式开展设计…

Qt之屏幕录制设计(十六)

Qt开发 系列文章 - screencap&#xff08;十六&#xff09; 目录 前言 一、实现原理 二、实现方式 1.创建录屏窗口 2.录屏窗口类定义 3.自建容器对象定义 4.用户使用 5.效果演示 总结 前言 利用Qt实现屏幕录制设计&#xff0c;可以通过使用Qt自带的类QScreen、QPixma…

【C语言程序设计——选择结构程序设计】求阶跃函数的值(头歌实践教学平台习题)【合集】

目录&#x1f60b; 任务描述 相关知识 1. 选择结构基本概念 2. 主要语句类型​&#xff08;if、if-else、switch&#xff09; 3. 跃迁函数中变量的取值范围 4. 计算阶跃函数的值 编程要求 测试说明 通关代码 测试结果 任务描述 本关任务&#xff1a;输入x的值&#x…

自定义字典转换器用于easyExcel 导入导出

文章目录 引言I 字典转换器、注解、序列化器注解定义自定义字典转换器用于easyExcel 导入导出自定义字典序列化器II 字典存储设计数据库表结构redis缓存引言 需求导入Excel时,根据字典内容或者字段编码转换 导出Excel时,根据字典内容或者字段编码转换 接口响应数据序列化时,…

Mac软件介绍之录屏软件Filmage Screen

软件介绍 Filmage Screen 是一款专业的视频录制和编辑软件&#xff0c;适用于 Mac 系统 可以选择4k 60fps&#xff0c;可以选择录制电脑屏幕&#xff0c;摄像头录制&#xff0c;可以选择区域录制。同时也支持&#xff0c;简单的视频剪辑。 可以同时录制电脑麦克风声音 标准…

RK3588平台开发系列讲解(系统篇)Linux Kconfig的语法

文章目录 一、什么是Kconfig二、config模块三、menuconfig四、menu 和 endmenu五、choice 和 endchoice六、source七、depends on八、default九、help十、逻辑表达式沉淀、分享、成长,让自己和他人都能有所收获!😄 一、什么是Kconfig Kconfig的语法及代码结构非常简单。本博…

基于ROS先验地图的机器人自主定位与导航SLAM

2021年学习&#xff0c;当时参加科大讯飞的智能车大赛&#xff0c; 【语音交互启动-teb算法路径规划A*算法自动避障路径最短优化yolo5目标检测视觉结果判断分类终点指定点位自动泊车语音播报。】 【讯飞学院】http://www.iflyros.com/home/ 一、全局路径规划中的地图 栅格地图&…

TCP 演进之路:软硬件跷跷板与新征程

今天依旧是与 TCP 相关的一个短评。 先看软硬件间的胶着。晶体管诞生以来&#xff0c;硬件一直在突飞猛进发展&#xff0c;后来这个事被摩尔定律正则化&#xff0c;人们开始可以预测未来&#xff0c;但即便如此&#xff0c;软件依然跟不上来&#xff0c;不过几年&#xff0c;老…

.NET 9.0 WebApi 发布到 IIS 详细步骤

微软表示&#xff0c;.NET 9 是迄今为止性能最高的 .NET 版本&#xff0c;对运行时、工作负载和语言方面进行了 1,000 多项与性能相关的改进&#xff0c;并采用了更高效的算法来生成更好的代码。 .NET 9 是 .NET 8 的继任者&#xff0c;特别侧重于云原生应用和性能。 作为标准期…

感知器的那些事

感知器的那些事 历史背景Rosenblatt和Minsky关于感知机的争论弗兰克罗森布拉特简介提出感知器算法Mark I感知机争议与分歧马文明斯基简介单层感知器工作原理训练过程多层感知器工作原理单层感知机 vs 多层感知机感知器模型(Perceptron),是由心理学家Frank Rosenblatt在1957年…

Flutter中的网络请求图片存储为缓存,与定制删除本地缓存

Flutter中的网络请求图片存储为缓存&#xff0c;与定制删除本地缓存 1&#xff1a;封装请求图片函数 2&#xff1a;访问的图片都会转为本地缓存&#xff0c;当相同的请求url&#xff0c;会在本地调用图片 3&#xff1a;本地缓存管理【windows与andriod已经测试】【有页面】【有…

复杂园区网基本分支的构建

目录 1、各主机进行网络配置。2、交换机配置。3、配置路由交换&#xff0c;进行测试。4、配置路由器接口和静态路由&#xff0c;进行测试。5、最后测试任意两台主机通信情况 模拟环境链接 拓扑结构 说明&#xff1a; VLAN标签在上面的一定是GigabitEthernet接口的&#xff0c…

快速入门Spring Cloud Alibaba,轻松玩转微服务

​ 1 快速入门Spring Cloud Alibaba&#xff0c;轻松玩转微服务 1.1 架构 架构图&#xff1a; 1.2 项目结构 1.2.1 系统框架版本 版本适配查看&#xff1a;https://sca.aliyun.com/docs/2023/overview/version-explain/ Spring Boot Version &#xff1a;3.2.4 Spring Clo…