OpenCV相机标定与3D重建(37)计算两幅图像之间单应性矩阵(Homography Matrix)的函数findHomography()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

找到两个平面之间的透视变换。
cv::findHomography 是 OpenCV 库中用于计算两幅图像之间单应性矩阵(Homography Matrix)的函数。单应性矩阵描述了两个平面之间的投影变换关系,它在计算机视觉中用于图像校正、拼接和增强现实等任务。

函数原型


Mat cv::findHomography	
(InputArray 	srcPoints,InputArray 	dstPoints,int 	method = 0,double 	ransacReprojThreshold = 3,OutputArray 	mask = noArray(),const int 	maxIters = 2000,const double 	confidence = 0.995 
)		

参数

  • 参数srcPoints:原平面中点的坐标,可以是类型为 CV_32FC2 的矩阵或 vector。
  • 参数dstPoints:目标平面中点的坐标,可以是类型为 CV_32FC2 的矩阵或 vector。
  • 参数method:用于计算单应性矩阵的方法。可能的方法包括:
    • 0:常规方法,使用所有点,即最小二乘法。
    • RANSAC:基于RANSAC的稳健方法。
    • LMEDS:最小中值(Least-Median)稳健方法。
    • RHO:基于PROSAC的稳健方法。
  • ransacReprojThreshold:仅用于 RANSAC 和 RHO 方法。这是允许的最大重投影误差,用于将一对点视为内点。也就是说,如果
    ∥ dstPoints i − convertPointsHomogeneous ( H ⋅ srcPoints i ) ∥ 2 > ransacReprojThreshold \| \texttt{dstPoints} _i - \texttt{convertPointsHomogeneous} ( \texttt{H} \cdot \texttt{srcPoints} _i) \|_2 > \texttt{ransacReprojThreshold} dstPointsiconvertPointsHomogeneous(HsrcPointsi)2>ransacReprojThreshold
    则认为点 i 是离群点。如果 srcPoints 和 dstPoints 以像素为单位测量,则通常将此参数设置在1到10之间是有意义的。
  • 参数mask:由稳健方法(如 RANSAC 或 LMEDS)设置的可选输出掩码。注意输入掩码值被忽略。
  • 参数maxIters:RANSAC的最大迭代次数。
  • 参数confidence:置信水平,介于0和1之间。

该函数找到并返回源平面和目标平面之间的透视变换矩阵 H H H

s i [ x i ′ y i ′ 1 ] ∼ H [ x i y i 1 ] s_i \begin{bmatrix} x'_i \\ y'_i \\ 1 \end{bmatrix} \sim H \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix} si xiyi1 H xiyi1
从而最小化反投影误差:
∑ i ( x i ′ − ( h 11 x i + h 12 y i + h 13 ) h 31 x i + h 32 y i + h 33 ) 2 + ( y i ′ − ( h 21 x i + h 22 y i + h 23 ) h 31 x i + h 32 y i + h 33 ) 2 \sum_i \left( \frac{x'_i - (h_{11}x_i + h_{12}y_i + h_{13})}{h_{31}x_i + h_{32}y_i + h_{33}} \right)^2 + \left( \frac{y'_i - (h_{21}x_i + h_{22}y_i + h_{23})}{h_{31}x_i + h_{32}y_i + h_{33}} \right)^2 i(h31xi+h32yi+h33xi(h11xi+h12yi+h13))2+(h31xi+h32yi+h33yi(h21xi+h22yi+h23))2
如果 method 参数设置为默认值 0,则函数使用所有点对通过简单的最小二乘方案计算初始单应性估计。

然而,如果并非所有的点对(srcPoints_i, dstPoints_i)都符合刚性的透视变换(即存在一些离群点),这个初始估计将会较差。在这种情况下,你可以使用三种稳健方法之一。RANSAC、LMEDS 和 RHO 方法尝试许多不同的随机子集(每次四个点对,共线点对被丢弃),使用这个子集和简单的最小二乘算法估计单应性矩阵,然后计算所估计单应性的质量/优度(对于RANSAC来说是内点的数量,对于LMEDS来说是最小中值重投影误差)。最佳子集随后用于生成单应性矩阵的初始估计和内点/离群点的掩码。

无论是否使用稳健方法,计算出的单应性矩阵都会进一步优化(在稳健方法的情况下仅使用内点),以Levenberg-Marquardt方法减少重投影误差。

RANSAC 和 RHO 方法可以处理几乎任何比例的离群点,但需要一个阈值来区分内点和离群点。LMEDS 方法不需要任何阈值,但只有当内点超过50%时才能正确工作。最后,如果没有离群点且噪声较小,使用默认方法(method=0)。

该函数用于找到初始的内部和外部矩阵。单应性矩阵确定至一个尺度。因此,它被标准化以使 h 33 = 1 h_{33}=1 h33=1。需要注意的是,每当无法估计 H 矩阵时,将返回一个空矩阵。

代码示例


#include <iostream>
#include <opencv2/opencv.hpp>using namespace cv;
using namespace std;int main( int argc, char** argv )
{// 创建虚拟的匹配点数据(假设我们有4对匹配点)vector< Point2f > srcPoints = { Point2f( 56.0f, 65.0f ), Point2f( 368.0f, 52.0f ), Point2f( 28.0f, 387.0f ), Point2f( 389.0f, 390.0f ) };vector< Point2f > dstPoints = { Point2f( 0.0f, 0.0f ), Point2f( 300.0f, 0.0f ), Point2f( 0.0f, 300.0f ), Point2f( 300.0f, 300.0f ) };// 定义输出的单应性矩阵和掩码Mat homographyMatrix, mask;// 使用 RANSAC 方法计算单应性矩阵homographyMatrix = findHomography( srcPoints, dstPoints,RANSAC,   // 使用RANSAC方法3.0,      // 点到投影模型的最大重投影误差mask,     // 输出掩码2000,     // 最大迭代次数0.995 );  // 置信水平// 打印结果cout << "Homography Matrix:\n" << homographyMatrix << endl;// 打印哪些点被认为是内点cout << "Inliers mask:\n";for ( size_t i = 0; i < mask.total(); ++i ){if ( mask.at< uchar >( i ) ){cout << "Point " << i + 1 << " is an inlier." << endl;}else{cout << "Point " << i + 1 << " is an outlier." << endl;}}return 0;
}

运行结果

Homography Matrix:
[1.055873761296419, 0.09181510967794945, -65.09691276166618;0.04690100493754324, 1.125624118501043, -75.79202397907012;0.0001832514481695185, 0.0005133370013304123, 0.9999999999999999]
Inliers mask:
Point 1 is an inlier.
Point 2 is an inlier.
Point 3 is an inlier.
Point 4 is an inlier.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/890928.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

初探C语言|C语言中有哪些操作符呢?

文章目录 前言算术操作符示例 移位操作符原码,反码 与补码正数负数计算 左移<<右移>> 位操作符例题 赋值操作符单目操作符sizeof 操作符 关系操作符逻辑操作符短路现象 条件操作符逗号表达式下标引用、函数调用和结构成员表达式求值算术转换操作符属性 欢迎讨论: 如…

GXUOJ-算法-第一次作业

1.整数划分 问题描述 GXUOJ | 整数划分 题解 #include<bits/stdc.h> using namespace std; const int N1010,mod1e97;int n; int f[N];int main(){cin>>n;f[0]1;for(int i1;i<n;i){for(int ji;j<n;j){f[j](f[j]f[j-i])%mod;}}cout<<f[n]; } 2.汉诺塔…

理想的以太网网络故障排查工具:LinkXpert M3

在排查铜缆、光纤和Wi-Fi以太网故障时&#xff0c;通常需要多种昂贵的工具&#xff0c;操作起来会很复杂。因此&#xff0c;我们推出了LinkXpert M3 —— 一个专为铜缆、光纤和Wi-Fi以太网网络故障排查而设计的工具。它功能强大、体积小巧、性价比高&#xff0c;无疑是您值得信…

Git如何设置和修改当前分支跟踪的上游分支

目录 前言 背景 设置当前分支跟踪的上游分支 当前分支已有关联&#xff0c;删除其关联&#xff0c;重新设置上游 常用的分支操作 参考资料 前言 仅做学习记录&#xff0c;侵删 背景 在项目开发过程中&#xff0c;从master新建分支时&#xff0c;会出现没有追踪的上游分…

专业版pycharm与服务器连接

一、先连接服务器 先创建配置&#xff1a; 名字随便取一个&#xff1a; 点击测试连接测试是否连接成功&#xff1b; 二、添加解释器 添加解释器&#xff0c;这个解释器是最开始在xshell中创建好的虚拟环境&#xff0c;具体虚拟环境创建可参考这篇&#xff1a;AutoDL服务器深…

LabVIEW如何学习FPGA开发

FPGA&#xff08;现场可编程门阵列&#xff09;开发因其高性能、低延迟的特点&#xff0c;在实时控制和高速数据处理领域具有重要地位。LabVIEW FPGA模块为开发者提供了一个图形化编程平台&#xff0c;降低了FPGA开发的门槛。本篇文章将详细介绍LabVIEW FPGA开发的学习路径&…

ISDP010_基于DDD架构实现收银用例主成功场景

信息系统开发实践 &#xff5c; 系列文章传送门 ISDP001_课程概述 ISDP002_Maven上_创建Maven项目 ISDP003_Maven下_Maven项目依赖配置 ISDP004_创建SpringBoot3项目 ISDP005_Spring组件与自动装配 ISDP006_逻辑架构设计 ISDP007_Springboot日志配置与单元测试 ISDP008_SpringB…

中学数学:一个函数值计算题

在数学的领域中&#xff0c;函数是一种描述变量之间关系的桥梁&#xff0c;它能够揭示出看似复杂现象背后的简洁规律。通过函数&#xff0c;我们可以预测、分析并解决实际问题。在这张图片中&#xff0c;我们看到了一位数学爱好者手写的解题过程&#xff0c;它展示了如何巧妙地…

#渗透测试#漏洞挖掘#红蓝攻防#常见未授权访问漏洞汇总

免责声明 本教程仅为合法的教学目的而准备&#xff0c;严禁用于任何形式的违法犯罪活动及其他商业行为&#xff0c;在使用本教程前&#xff0c;您应确保该行为符合当地的法律法规&#xff0c;继续阅读即表示您需自行承担所有操作的后果&#xff0c;如有异议&#xff0c;请立即停…

基于Oauth2的SSO单点登录---前端

Vue-element-admin 是一个基于 Vue.js 和 Element UI 的后台管理系统框架&#xff0c;提供了丰富的组件和功能&#xff0c;可以帮助开发者快速搭建现代化的后台管理系统。 一、基本知识 &#xff08;一&#xff09;Vue-element-admin 的主要文件和目录 vue-element-admin/ |--…

华为 AI Agent:企业内部管理的智能变革引擎(11/30)

一、华为 AI Agent 引领企业管理新潮流 在当今数字化飞速发展的时代&#xff0c;企业内部管理的高效性与智能化成为了决定企业竞争力的关键因素。华为&#xff0c;作为全球领先的科技巨头&#xff0c;其 AI Agent 技术在企业内部管理中的应用正掀起一场全新的变革浪潮。 AI Ag…

RustDesk内置ID服务器,Key教程

RustDesk内置ID服务器&#xff0c;Key教程 首先需要准备一个域名&#xff0c;并将其指定到你的 rustdesk 服务器 ip 地址上&#xff0c;这里编译采用的是Github Actions &#xff0c;说白了是就workflows&#xff0c;可以创建一些自动化的工作流程&#xff0c;例如代码的检查&a…

Wend看源码-Java-集合学习(List)

摘要 本篇文章深入探讨了基于JDK 21版本的Java.util包中提供的多样化集合类型。在Java中集合共分类为三种数据结构&#xff1a;List、Set和Queue。本文将详细阐述这些数据类型的各自实现&#xff0c;并按照线程安全性进行分类&#xff0c;分别介绍非线程安全与线程安全的实现方…

阿里云新用户服务器配置

创建和链接实例 创建实例&#xff0c;点击左侧标签栏总的实例&#xff0c; 找到链接帮助 根据帮助中的ip信息&#xff0c;然后启用vscode的ssh链接 ctrlp选择配置&#xff0c;输入公网的ip即可 passwd修改root密码 安装conda 参考 https://blog.csdn.net/adreammaker/arti…

五金产品视觉检测

五金产品种类繁多&#xff0c;且与我们的日常生活紧密有关&#xff0c;依照加工工艺的不同&#xff0c;五金产品有压铸件&#xff0c;五金冲压件&#xff0c;铸件等&#xff0c;无论是哪种加工方式&#xff0c;产品总会存在各式各样的问题&#xff0c;今天我们就五金产品的缺陷…

拼多多纠偏,能否实现买卖平权?

科技新知 原创作者丨江蓠 编辑丨蕨影 当曾将仅退款、运费险作为标配的电商平台们开始听到商家诉求&#xff0c;有意优化营商环境&#xff0c;作为“仅退款”服务发起者的拼多多也坐不住了。 在推出一揽子减免计划讨好中小商家之后&#xff0c;拼多多近期被传正在内测精选用户…

XGPT用户帮助手册

文章目录 20242024.12.27 摘要 本文介绍如何使用XGPT软件, XGPT融合了当前最先进的人工智能技术&#xff0c;并专为国内用户优化。 2024 2024.12.27 XGPT v1正式发布, 特色功能: 具备图像文本多模态处理功能包含GPT等最先进模型国内可访问 B站视频介绍 图1 XGPT v1 快照

低代码开源项目Joget的研究——Joget7社区版安装部署

大纲 环境准备安装必要软件配置Java配置JAVA_HOME配置Java软链安装三方库 获取源码配置MySql数据库创建用户创建数据库导入初始数据 配置数据库连接配置sessionFactory编译下载tomcat启动下载aspectjweaver移动jw.war文件编写脚本运行 测试参考资料 Joget&#xff0c;作为一款开…

后端开发如何高效使用 Apifox?

Apifox 是一个 API 协作开发平台&#xff0c;后端、前端、测试都可以使用 Apifox 来提升团队的工作效率。对于后端开发者而言&#xff0c;Apifox 的核心功能主要包括四个模块&#xff1a;调用 API、定义 API、开发与调试 API 以及生成 API 文档。本文将详细介绍后端开发人员如何…

flask后端开发(11):User模型创建+注册页面模板渲染

目录 一、数据库创建和配置信息1.新建数据库2.数据库配置信息3.User表4.ORM迁移 二、注册页面模板渲染1.导入静态文件2.蓝图注册路由 一、数据库创建和配置信息 1.新建数据库 终端中 CREATE DATABASE zhiliaooa DEFAULT CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;2…