easegen将教材批量生成可控ppt课件方案设计

之前客户提出过一个需求,就是希望可以将一本教材,快速的转换为教学ppt,虽然通过人工+程序脚本的方式,已经实现了该功能,但是因为没有做到通用,每次都需要修改脚本,无法让客户自行完成所有流程,所以决定重新设计一下这个功能,最终目标就是用户自行上传一本书,可以自动生成所有的ppt。 首先,我们设计一下方案。先与gpt聊聊,看看他的想法。

产品方案

一、产品目标

目标

  • 用户上传一本 Word/PDF 电子书,我们的程序将其 自动化地转成 PPT。
  • 整个流程尽量减少用户手动干预,通过 大模型接口服务的配合,实现自动化和规范化处理。

核心需求

  1. 将电子文档(Word/PDF)内容提取,并 准确保留层级结构
  2. 自动拆分文档到合适的粒度(如:章/节)。
  3. 基于大模型,规范化并生成 适合 PPT 展示的标题和段落内容。
  4. 通过 AIPPT 服务(如「文多多easegen.docmee.cn」)选择/应用模板,一键生成 PPT。

二、整体流程设计

为了更好地拆解每一步的逻辑,下面给出一个从输入到输出的可能流程。可以视为 MVP(最小可行产品)的流程,也可以在此基础上扩展更多的功能。

1. 上传电子文档

  1. 用户上传:用户在前端界面上传 Word 或 PDF 文件。
  2. 文档接收:后端服务器接收文件,进行排队/存储。
  3. 格式识别:如果是 PDF,则需要做 OCR 或基于 PDF 解析工具(如 PyPDF2、pdfplumber 等)提取文本及结构;如果是 Word,利用 Python-docx 或者其他库来读取段落、标题信息。

注意点

  • PDF 的解析准确性和对“标题层级”的捕捉需要仔细处理;Word 相对更容易获取结构。
  • 大批量页数的文档,可能需要异步处理或者任务队列提高效率。

2. 转换为 Markdown

  1. 提取文本 + 结构:识别文档中的标题、段落、列表、图片等内容,按照 层级做一个内部数据结构存储(如树形结构:章 -> 节 -> 小节)。
  2. 生成 Markdown:将文档中每个标题、段落转换为相应的 Markdown 语法。
    • 例如“第一章”用 # 第一章,如果有节则用 ## 标记,依此类推。
    • 对段落使用普通文本行表示,对列表、引用等可以使用 Markdown 语法进行标记。

注意点

  • 标题的级别需要先简单做规则匹配(如大纲级别或者正则)或通过自然语言模型判断(如 GPT、BERT),以尽量保证结构准确。
  • 如果有插图(如 PDF 中插画或 Word 中的图片),需要决定是否保留在 Markdown 中(可以用 ![图片说明](图片链接) 标记),或暂时忽略。

3. 拆分 Markdown

  1. 按规则拆分:如按照 或者 进行拆分,拆分成多个独立的 Markdown 文件(或内存对象),以方便后续处理。
  2. 存储管理:将拆分后的文档保存到数据库或对象存储中,记录各自的标题、文本内容、层级信息等元数据。
  3. 处理顺序:可并行或顺序对每个部分进行后续处理。

4. 标题和内容的规范化

  1. 调用大模型:对于每个拆分单元,调用大模型(如 GPT-4 / ChatGPT)对标题进行重新整理或概括。
    • 例如,若标题写法不统一:有些写了“第一章”,有些只写了“1.1”,或标题过长;则让大模型输出一个“最合适、最简洁/最贴切的标题”。
    • 同时可以让大模型对段落做简要摘要,或者做对 PPT 友好的精简。
  2. 保证一致性:可能需要一些 prompt 工程,给大模型输入“当前已有标题”和“整体风格”,告诉它要以何种风格输出标题(如“统一中文,尽量简洁”)。
  3. 可选:内容精炼:如果需要做 PPT,就需要精炼文字;也可以让大模型输出要点式、分点式的内容。

注意点

  • 标题太长或不符合 PPT 场景时,需要做裁剪或优化。
  • 有些用户可能想保留章节编号等信息,需要在设计 prompt 时设置“保留”或“移除”等。

5. 生成 PPT

  1. 选择 PPT 模板
    • 后端可以直接调用 AIPPT 服务(如「文多多」)的 API,传递模板 ID 或者让用户自己上传模板 PPT 文件(需要解析或兼容该模板)。
  2. 组装 PPT
    • 通过 AIPPT 的接口把每个拆分单元的标题、段落、图片等按照一定的版式规则填充到 PPT 中的占位符。
    • 如果要有更多炫酷效果,需要先在模板里定义布局,然后通过接口插入对应的文字和图片。
  3. 生成下载链接
    • 生成好的 PPT 存储在后端或第三方对象存储中,返回下载链接或在前端直接预览。

注意点

  • 不同章节可以采用不同的版式(如大标题页 vs 内容页 vs 图片页),需要在产品设计中给用户更多自定义或自动判断的选项。
  • 需要接口配合,不同 AIPPT 平台的对接方式略有差异。

三、技术架构概述

从整体上看,可以考虑分为前端后端第三方服务三个模块:

  1. 前端

    • 提供上传文件界面、进度条或任务队列状态展示。
    • 设置 PPT 模板选择/管理界面,或可自定义一些基础参数(字号、配色、页眉页脚等)。
    • 提供生成完成后的 PPT 预览和下载。
  2. 后端

    • 文件解析模块:用相应的 Python 库或第三方服务进行 Word/PDF 解析,输出结构化数据。
    • Markdown 生成和拆分模块:将结构化数据转换为 Markdown,按章/节拆分。
    • 大模型调用模块:对接 GPT 系列或其他大模型 API,对标题和内容做规范化处理。
    • PPT 生成模块:对接「文多多」等 AIPPT 接口,通过 API 创建 PPT 并填充内容。
    • 数据库与存储:存储解析后的文本和生成后的 PPT 文件。
  3. 第三方服务(AIPPT 等)

    • 与 AIPPT 平台(如「文多多」)的接口对接:上传内容、选择模板、生成 PPT、返回 PPT 链接。

可选的扩展

  • 如果用户对 PPT 排版有较高要求,后端可以自建一个 PPT 生成服务,基于 python-pptx 等库进行灵活的版面布局。
  • 还可以接入更多大模型能力,如自动插入合适的图片/图标、自动生成演讲者备注等。

四、产品形态与交互

MVP 版交互

  1. 用户进入页面,上传电子书(Word/PDF)。
  2. 等待文档解析完成(队列/异步)。
  3. 系统展示检测到的 章节结构(可视化大纲),让用户有机会手动微调(如删除某些章节,或修正某些标题)。
  4. 用户点击“生成 PPT”按钮;选择或上传模板;设置一些偏好(如字号、主题色等)。
  5. 系统调用大模型对标题和内容进行精简/规范化;调用 AIPPT 接口生成 PPT;生成下载地址。
  6. 用户可以预览并下载 PPT。

增强版交互思路

  • 模板市场:用户可浏览各种不同风格的 PPT 模板,一键套用。
  • 可视化编辑:生成 PPT 之前,前端展示“预览”页,允许用户拖拽/编辑页面布局、文字样式、背景等。
  • 大模型再编辑:用户对某些页面不满意,可点一下“重新生成文案”按钮,实时调用大模型给出新的文字排版。
  • 协同:多用户协同编辑同一本书,最后同步生成 PPT。

五、可能的难点与挑战

  1. PDF 结构化:如果书是 PDF 格式,可能存在 PDF 制作不规范、文字排版混乱等问题,标题与正文区分不明显,需要一定的 NLP 或启发式算法来识别。
  2. 章节层级准确:若原文档标题标注不规范,需要大模型/NLP 进行多轮判断,可能存在一定的错误率。
  3. 标题/内容的自动化生成质量:大模型能够简化标题,但有可能失去用户想要保留的信息,需要在产品上提供“是否保持原文”/“简化改写”/“翻译”等选项。
  4. PPT 生成接口的灵活度:如果第三方 AIPPT 平台的接口不够灵活,可能无法做更精细的排版,需要自己实现或与更多平台做兼容。
  5. 效率和成本:长文档调用大模型会带来较高的 API 成本,也需要考虑速度和并发问题。

六、后续可扩展方向

  1. 支持多语言:不仅限于中文书,英文或其他语言同样可以自动生成相应 PPT。
  2. 支持更多输出形式:不仅是 PPT,也可以生成 PDF 报告、HTML 网页等。
  3. 知识库和搜索:把拆分后的文档内容建立知识库,用户可以在生成 PPT 前后进行搜索/问答。
  4. 多种总结粒度:PPT 只是一种表达方式,或许可以同时生成“精华版”和“详细版”,根据用户需求选择不同程度的精简。
  5. 数据分析:如果是教材或商业文档,可以自动分析文档结构、关键词、知识点分布,形成更多增值服务。

七、总结

这套方案的关键是:

  1. 精确保留并提取文档层级结构
  2. 通过大模型进行标题/内容的统一和精简
  3. 对接可定制的 PPT 生成接口,实现“所见即所得”或者“一键生成”。

在产品的早期阶段,先实现基础流程(上传->解析->拆分->生成->下载),后续逐步增强可视化交互、模板管理、多语言支持等功能。

在实际落地时,还要注意性能、API 成本、错误率等现实问题。但如果能在技术和产品设计上规划合理,这将是一个有相当使用价值、也具备差异化竞争力的应用。


可以看到,gpt帮助生成了一份非常详细的产品方案,并且还给出了MVP的落地思路,真的非常棒,接下来,我们使用https://diagrammingai.com/生成一个流程图,可以看的更清晰

流程图

alt

将gpt的方案输入以后,快速的生成了一个流程图,可以更清晰的了解整体方案

动手

接下来我们就要开始动手实现了,因为已经有了一定的基础,所以我采用逆向的方式进行开发实现,方便每实现一个功能即可快速验证。

  • 第一步先实现标准格式markdown文本生成ppt;
  • 第二步实现markdown文本格式的校验和自动标准化
  • 第三步实现markdown文本的拆分
  • 第四步实现pdf转markdown
  • 然后实现前端页面部分的文件上传、转换、拆分、标准化、生成ppt
  • 最后针对某些难点如自定义规则拆分、格式标准化场景,通过agent的方式尽量实现自动化
alt

自我介绍 😎

我是一个AGI时代超级个体践行者,喜欢AI技术并且希望使用AI技术让我们的生活更加美好,欢迎有相同目标的朋友加好友我们一起前行。🤝

我可以提供AI大模型业务技术咨询产品设计产品落地。同时拥有数字人课程在线教育智慧知识库等产品。欢迎来撩。✉️✨

alt

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/890861.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从安全角度看 SEH 和 VEH

从安全角度看 SEH 和 VEH 异常处理程序是处理程序中不可预见的错误的基本方法之一 https://learn.microsoft.com/en-us/dotnet/csharp/fundamentals/exceptions/ SEH——结构化异常处理程序 就其工作方式而言,异常处理程序与其他处理程序相比相当基础&#xff0…

nexus docker安装

#nexus docker 安装 docker pull sonatype/nexus3 mkdir -p /data/nexus-data docker run -itd -p 8081:8081 --privilegedtrue --name nexus3 \ -v /data/nexus-data:/var/nexus-data --restartalways docker.io/sonatype/nexus3 #访问 http://192.168.31.109:8081/ 用户名&am…

华为电源工程师面试题

电源工程师面试题涵盖硬件设计、仿真和验证、问题解决、元件选择、热设计和功耗分析、软件配合以及专业知识等多个方面。以下是一些可能的面试题及其参考回答思路: 一、硬件设计和架构 请解释一下LLC谐振变换器的工作原理以及它的优势。 回答思路:LLC谐振变换器是一种高效、…

Pinia最简单使用(vite+vue3)

文章目录 创建项目安装Pinia包main.js注册Pinia在src下创建store/store.js文件,放入以下内容在app.vue中的使用(在其他组件也一样的) 创建项目 npm create vitelatest my-vue-app选vue 选JavaScript cd my-vue-app npm install npm run dev安装Pinia包 npm install piniamain…

Spark生态圈

Spark 主要用于替代Hadoop中的 MapReduce 计算模型。存储依然可以使用 HDFS,但是中间结果可以存放在内存中;调度可以使用 Spark 内置的,也可以使用更成熟的调度系统 YARN 等。 Spark有完善的生态圈: Spark Core:实现了…

DP之背包基础

目录 DP简介 01背包问题 采药(01背包例题) 完全背包 疯狂的采药(完全背包例题) 背包变式 装箱问题 砝码称重 质数拆分 优化思考 DP简介 全称Dynamic Programming即动态规划 DP算法是解决多阶段决策过程最优化问题的一种常用方法。 多阶段决策过程是指这样一类特…

vue最新源码探索分析

我在github上fork了最新版本vue3.5版本的源码并做了大幅删除,保留最核心的代码,有兴趣的可以看看,欢迎大家提出PR 仓库地址 https://github.com/greatanimalion/core 本项目vue版本3.5.13 为了方便查看与分析,减少心智负担 已…

边缘计算收益稳定

要使自己的PCDN(Personal Content Delivery Network,个人内容分发网络)收益更稳定,可以从以下几个方面进行努力: 一、选择合适的PCDN平台 平台稳定性:选择技术成熟、稳定性高的PCDN平台,确保内…

CSS系列(39)-- Shapes详解

前端技术探索系列:CSS Shapes详解 ✨ 致读者:探索形状布局的艺术 👋 前端开发者们, 今天我们将深入探讨 CSS Shapes,这个强大的形状布局特性。 基础形状 🚀 圆形与椭圆 /* 基础圆形 */ .circle {widt…

CSS---实现盒元素div内input/textarea的focus状态时给父元素加属性!

注意兼容性,低版本浏览器无效 要实现当 textarea 文本框获得焦点时,自动给其父元素添加类名或样式,您可以使用 CSS 的 :focus-within 伪类选择器。这个选择器会在元素本身或其任何子元素获得焦点时应用样式。 示例代码 假设您有以下 HTML 结…

2011-2020年各省城镇职工基本医疗保险年末参保人数数据

2011-2020年各省城镇职工基本医疗保险年末参保人数数据 1、时间:2011-2020年 2、来源:国家统计局 3、指标:省份、时间、城镇职工基本医疗保险年末参保人数 4、范围:31省 5、指标解释:参保人数指报告期末按国家有关…

在线excel编辑(luckysheet)

项目地址:Luckysheet: 🚀Luckysheet ,一款纯前端类似excel的在线表格,功能强大、配置简单、完全开源。 可以下载项目使用npm安装运行,也可以用cdn 加载excel文件(使用luckyexcel): …

Bert中文文本分类

这是一个经典的文本分类问题,使用google的预训练模型BERT中文版bert-base-chinese来做中文文本分类。可以先在Huggingface上下载预训练模型备用。https://huggingface.co/google-bert/bert-base-chinese/tree/main 我使用的训练环境是 pip install torch2.0.0; pi…

NLP工具

1、用python提取PDF中各类文本内容的方法 2、文本分块(Chunking)方法,直接影响LLM应用效果 3、

【无标题】学生信息管理系统界面

网页是vue框架,后端直接python写的没使用框架

macos安装maven以及.bash_profile文件优化

文章目录 下载和安装maven本地仓库配置国内镜像仓库配置.bash_profile文件优化 下载和安装maven maven下载地址 存放在/Library/Java/env/maven目录 本地仓库配置 在maven-3.9.9目录下创建maven-repo目录作为本地文件仓库打开setting配置文件 在setting标签下,添…

提示词工程教程(七):小样本和上下文学习

概述 本教程使用 OpenAI 的 GPT 模型和 LangChain 库探索小样本学习和上下文学习的前沿技术。这些方法使 AI 模型能够使用最少的示例执行复杂的任务,从而彻底改变了我们处理机器学习问题的方式。 主题 传统机器学习通常需要大量数据集进行训练,这非常耗…

用Excel表格在线发布期末考试成绩单

每到期末,发布学生的期末考试成绩单便是老师们的一项重要任务。以往,传统的纸质成绩单分发效率低还易出错,而借助 Excel 表格在线发布,则开启了全新高效模式。 老师们先是精心整理各科成绩,录入精准无误的分数到 Excel…

WPF 绘制过顶点的圆滑曲线(样条,贝塞尔)

项目中要用到样条曲线,必须过顶点,圆滑后还不能太走样,捣鼓一番,发现里面颇有玄机,于是把我多方抄来改造的方法发出来,方便新手: 如上图,看代码吧: -------------------…

python监控数据处理应用服务Socket心跳解决方案

1. 概述 从网页、手机App上抓取数据应用服务,涉及到多个系统集成协同工作,依赖工具较多。例如,使用Frida进行代码注入和动态分析,以实现对网络通信的监控和数据捕获。在这样的集成环境中,手机模拟器、手机中应用、消息…