ResNet网络:深度学习中的革命性架构

目录

​编辑

引言

ResNet网络的特点

1. 残差块(Residual Block)

2. 恒等映射(Identity Mapping)

3. 深层网络训练

4. Batch Normalization

5. 全局平均池化

6. 灵活的结构

ResNet的应用案例

ResNet的研究进展

实战案例

代码实现

网络结构可视化

训练和评估

模型评估

ResNet在医学图像处理中的应用

研究进展与挑战

结论


引言

在深度学习领域,尤其是计算机视觉任务中,构建有效的深层网络一直是一个挑战。随着网络层数的增加,梯度消失和梯度爆炸问题使得训练变得困难。ResNet(残差网络)的出现,以其独特的残差学习框架,解决了这一难题,使得构建和训练非常深的网络成为可能。

ResNet网络的特点

1. 残差块(Residual Block)

ResNet的核心是残差块,它包含两个卷积层和一个捷径(shortcut)连接。这个捷径连接允许输入直接跳过一些层,与层的输出相加。这种设计使得网络能够学习到恒等映射,即直接传递输入到输出,从而缓解了梯度消失问题。

2. 恒等映射(Identity Mapping)

ResNet的另一个关键特点是恒等映射,它确保了在增加网络深度时,性能不会下降。通过这种方式,ResNet能够构建非常深的网络,如152层,而不会损失性能。

3. 深层网络训练

ResNet证明了即使网络非常深,只要使用残差块,也可以有效地训练。这为深度学习模型的设计和训练开辟了新的可能性。

4. Batch Normalization

ResNet在每个卷积层后使用批量归一化(Batch Normalization),这有助于加速训练过程,并提高模型的泛化能力。

5. 全局平均池化

在网络的末端,ResNet使用全局平均池化层替代全连接层,这减少了模型的参数数量,并降低了过拟合的风险。

6. 灵活的结构

ResNet的结构可以根据需要调整残差块的数量和通道数,使其适应不同的任务和数据集。

ResNet的应用案例

ResNet不仅在图像分类任务中表现出色,还被广泛应用于其他领域,如医学图像处理。例如,有研究利用ResNet进行自动白内障分类,以及在医学图像融合中的多尺度残差金字塔注意力网络。这些研究表明,ResNet的强大的学习能力和灵活性使其在多个领域都有广泛的应用前景。

ResNet的研究进展

ResNet的研究不断深入,出现了多种改进和变体,如Res2Net、ResNeSt等。这些改进旨在通过多尺度特征融合、注意力机制等方式进一步提升ResNet的性能。此外,ResNet也被用于构建更深层次的网络结构,如Deep Pyramidal Residual Networks,这些网络通过增加网络的深度来提高性能。

实战案例

在实战案例中,ResNet的不同变体被用于解决具体的图像分类问题。例如,ResNet50被用于鸟类图像的4分类问题,展示了ResNet在实际应用中的有效性。

代码实现

以下是使用PyTorch框架实现的ResNet网络的基本代码。这段代码展示了如何构建一个基本的残差块和一个完整的ResNet模型。

import torch
import torch.nn as nnclass BasicBlock(nn.Module):expansion = 1def __init__(self, in_channels, out_channels, stride=1, downsample=None):super(BasicBlock, self).__init__()self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)self.bn1 = nn.BatchNorm2d(out_channels)self.relu = nn.ReLU(inplace=True)self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False)self.bn2 = nn.BatchNorm2d(out_channels)self.downsample = downsampledef forward(self, x):identity = xout = self.conv1(x)out = self.bn1(out)out = self.relu(out)out = self.conv2(out)out = self.bn2(out)if self.downsample is not None:identity = self.downsample(x)out += identityout = self.relu(out)return outclass Bottleneck(nn.Module):expansion = 4def __init__(self, in_channels, out_channels, stride=1, downsample=None):super(Bottleneck, self).__init__()self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)self.bn1 = nn.BatchNorm2d(out_channels)self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)self.bn2 = nn.BatchNorm2d(out_channels)self.conv3 = nn.Conv2d(out_channels, out_channels * self.expansion, kernel_size=1, bias=False)self.bn3 = nn.BatchNorm2d(out_channels * self.expansion)self.relu = nn.ReLU(inplace=True)self.downsample = downsampledef forward(self, x):identity = xout = self.conv1(x)out = self.bn1(out)out = self.relu(out)out = self.conv2(out)out = self.bn2(out)out = self.relu(out)out = self.conv3(out)out = self.bn3(out)if self.downsample is not None:identity = self.downsample(x)out += identityout = self.relu(out)return outclass ResNet(nn.Module):def __init__(self, block, layers, num_classes=1000):super(ResNet, self).__init__()self.in_channels = 64self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)self.bn1 = nn.BatchNorm2d(64)self.relu = nn.ReLU(inplace=True)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)self.layer1 = self._make_layer(block, 64, layers[0])self.layer2 = self._make_layer(block, 128, layers[1], stride=2)self.layer3 = self._make_layer(block, 256, layers[2], stride=2)self.layer4 = self._make_layer(block, 512, layers[3], stride=2)self.avgpool = nn.AdaptiveAvgPool2d((1, 1))self.fc = nn.Linear(512 * block.expansion, num_classes)def _make_layer(self, block, out_channels, blocks, stride=1):downsample = Noneif stride != 1 or self.in_channels != out_channels * block.expansion:downsample = nn.Sequential(nn.Conv2d(self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride, bias=False),nn.BatchNorm2d(out_channels * block.expansion),)layers = []layers.append(block(self.in_channels, out_channels, stride, downsample))self.in_channels = out_channels * block.expansionfor _ in range(1, blocks):layers.append(block(self.in_channels, out_channels))return nn.Sequential(*layers)def forward(self, x):x = self.conv1(x)x = self.bn1(x)x = self.relu(x)x = self.maxpool(x)x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)x = self.layer4(x)x = self.avgpool(x)x = torch.flatten(x, 1)x = self.fc(x)return xdef resnet18(num_classes=1000):return ResNet(BasicBlock, [2, 2, 2, 2], num_classes=num_classes)def resnet34(num_classes=1000):return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes)def resnet50(num_classes=1000):return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes)def resnet101(num_classes=1000):return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes)def resnet152(num_classes=1000):return ResNet(Bottleneck, [3, 8, 36, 3], num_classes=num_classes)

网络结构可视化

使用工具如torchviz可以生成ResNet模型的网络结构图,包括计算路径、网络各层的权重和偏移量,这有助于深入理解模型的内部结构和工作机制。

训练和评估

在实际应用中,除了构建模型外,还需要进行模型的训练和评估。以下是使用PyTorch进行模型训练和评估的基本代码示例:

import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms# 数据预处理
transform = transforms.Compose([transforms.RandomResizedCrop(224),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])# 加载数据集
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)# 初始化模型、损失函数和优化器
model = resnet34(num_classes=10)  # CIFAR-10有10个类别
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# 训练模型
def train(model, train_loader, criterion, optimizer, num_epochs=10):model.train()for epoch in range(num_epochs):running_loss = 0.0for images, labels in train_loader:optimizer.zero_grad()outputs = model(images)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {running_loss/len(train_loader):.4f}')# 开始训练
train(model, train_loader, criterion, optimizer, num_epochs=10)

模型评估

训练完成后,需要对模型进行评估,以验证其在测试集上的性能。以下是评估模型的代码示例:

# 加载测试数据集
test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)def evaluate(model, test_loader):model.eval()correct = 0total = 0with torch.no_grad():for images, labels in test_loader:outputs = model(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print(f'Accuracy of the model on the test images: {100 * correct / total:.2f}%')# 进行评估
evaluate(model, test_loader)

ResNet在医学图像处理中的应用

ResNet在医学图像处理领域也展现了巨大的潜力。例如,研究者们利用ResNet进行肺部CT图像的肺结节检测,取得了显著的效果。通过对大规模医学图像数据集的训练,ResNet能够有效地提取特征,帮助医生进行早期诊断。

研究进展与挑战

尽管ResNet在多个领域取得了成功,但仍面临一些挑战。例如,如何在保持模型性能的同时减少计算复杂度和内存占用,仍然是一个活跃的研究方向。此外,随着数据集规模的不断扩大,如何有效地训练更深层次的网络也是一个需要解决的问题。

结论

ResNet通过其创新的残差学习框架,不仅推动了深度学习模型的发展,也为解决深层网络训练中的梯度问题提供了有效的解决方案。其灵活性和有效性使其成为了许多计算机视觉任务的首选模型之一。随着深度学习技术的不断进步,ResNet及其变体将继续在这一领域发挥重要作用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/889868.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Node.js day-01

01.Node.js 讲解 什么是 Node.js,有什么用,为何能独立执行 JS 代码,演示安装和执行 JS 文件内代码 Node.js 是一个独立的 JavaScript 运行环境,能独立执行 JS 代码,因为这个特点,它可以用来编写服务器后端…

又要考试了

一、实现无名管道练习&#xff1a;父进程写入管道&#xff0c;子进程读取管道数据。 #include<myhead.h> int main(int argc, const char *argv[]) {int fd[2];char buff[1024]"王吕阳&#xff0c;崔庆权别卷了";char s[1024];if(pipe(fd)-1){perror("pi…

LoadBalancer负载均衡和Nginx负载均衡区别理解

LoadBalancer和Nginx都是用来做负载均衡用的&#xff0c;那二者有什么区别呢&#xff1f; Nginx服务器端的负载均衡&#xff1a; 所有请求都先发到nginx&#xff0c;然后再有nginx转发从而实现负载均衡。LoadBalancer是本地的负载均衡&#xff1a; 它是本地先在调用微服务接口…

Technitium DNS Server的基本使用1(创建主区域,A记录,开启递归查询,递归到114.114.114.114)

Technitium DNS Server Technitium DNS Server搭建 搭建请看博主的上篇博客&#xff0c;内外网的方法都有 链接: 内网搭建Technitium DNS Server详细教程 登陆进去是以下界面 这个界面主要是监控&#xff0c;有访问的时候就会有波动 创建主区域&#xff0c;A记录 写上主区…

Git简介和特点

目录 一、Git简介 二、Git特点 1.集中式和分布式 (1)集中式版本控制系统 (2)分布式版本控制系统 2.版本存储方式的差异 (1)直接记录快照&#xff0c;而非差异比较 3.近乎所有操作都是本地执行 一、Git简介 Git是目前世界上最先进的的分布式控制系统&#xff08;没有之一…

CSS学习记录15

CSS下拉菜单 使用CSS创建可悬停的下拉列表。 下拉式式菜单 .dropdown类使用position:relative,当我们希望将下拉内容放置在下拉按钮的正下方(使用position:absolute)时&#xff0c;需要使用该类。 .dropdown-content 类保存实际的下拉内容。默认情况下它是隐藏的&#xff0…

RabbitMQ全局流量控制

RabbitMQ全局流量控制 流控机制流控是对什么进行控制&#xff1f;rabbitmq进程邮箱流控机制是什么&#xff1f; 流控原理流控原理流程 流控状态显示流控对象流控机制对象主要进程各进程状态情形分析 性能提升提升队列性能方式 当消息积压时&#xff0c;消息会进入到队列深处&am…

大数据平台

大数据行业应用持续升温&#xff0c;特别是企业级大数据市场正在进入快速发展时期。越来越多的企业期望实现数据孤岛的打通&#xff0c;整合海量的数据资源&#xff0c;挖掘并沉淀有价值的数据&#xff0c;进而驱动更智能的商业。随着公司数据爆发式增长&#xff0c;原有的数据…

鸿蒙生态的崛起:开发实践、认证路径与激励策略

目录 前言 鸿蒙生态能力和行业解决方案 1、鸿蒙创新能力 2、鸿蒙行业解决方案 中软鸿蒙生态业务布局 1、深度参与鸿蒙生态建设 2、提供一站式鸿蒙生态服务 &#xff08;1&#xff09;服务目录 &#xff08;2&#xff09;改造过程的关键点 &#xff08;3&#xff09;鸿…

指令遵循数据集IFEval介绍:中英双语

IFEval数据集介绍&#xff1a;评估大语言模型指令遵循能力 1. IFEval数据集提出的问题 随着大语言模型&#xff08;如GPT-4、PaLM 2等&#xff09;在自然语言任务中的广泛应用&#xff0c;模型的指令遵循能力&#xff08;Instruction Following&#xff09;成为一个重要评估指…

基于Qt的上位机通讯库

1.前言 做Qt上位机已经有两年的时间了&#xff0c;上位机主要是和下游器件打交道的&#xff0c;通过modbus、tcp、串口等协议来控制这些设备&#xff0c;通过一定的时序控制&#xff0c;完成所需要的工作流程。这其中最重要的就是通讯了&#xff0c;上位机开发过程中的相当一部…

docker安装mysql5.7

1、宿主机创建映射目录 mkdir -p /data/mysql/log mkdir -p /data/mysql/data mkdir -p /data/mysql/conf这里我放在了/data/mysql目录下 2、拉取mysql镜像 docker pull mysql:5.7注意是5.7版本&#xff0c;如果是8版本操作会略有不同&#xff0c;下篇文章介绍安装8版本的操…

SQLServer利用QQ邮箱做SMTP服务器发邮件

环境 Microsoft SQL Server 2019 (RTM) - 15.0.2000.5 (X64) SQL Server Management Studio 15.0.18384.0 SQL Server 管理对象 (SMO) 16.100.46367.54 Microsoft .NET Framework 4.0.30319.42000 操作系统 Windows Server2019 ———————————————— 前言&#xf…

好用的网站-直接复制的文字图标不需要引入

分享一个前端不需要引入的&#xff0c;可以直接复制的图标网站 直接复制放在代码中 特殊符号大全&#xff0c;可直接复制黏贴 (shijianchuo.net)

修改uniapp下拉刷新圆圈颜色

直接看图 修改前就是常规的绿色 自定义更符合我们的软件 直接说方法 修改 在App.vue的style样式里添加一行 .uni-page-refresh--refreshing .uni-page-refresh__path{stroke:#FF2442; }我是通过 不执行 uni.stopPullDownRefresh(); 下拉刷新 之后通过F12看出来的 希望可以帮…

Maven插件打包发布远程Docker镜像

dockerfile-maven-plugin插件的介绍 dockerfile-maven-plugin目前这款插件非常成熟&#xff0c;它集成了Maven和Docker&#xff0c;该插件的官方文档地址如下&#xff1a; 地址&#xff1a;https://github.com/spotify/dockerfile-maven 其他说明&#xff1a; dockerfile是用…

12.11数据结构-图

无向完全图&#xff1a;在无向图中&#xff0c;如果任意两个顶点之间都存在边&#xff0c;则称该图为无向完全图。 有向完全图&#xff1a;在有向图中&#xff0c;如果任意两个顶点之间都存在方向相反的两条弧&#xff0c;则称该图为有向完全图。 含有n个顶点的无向完全图有…

Intel(R) Iris(R) Xe Graphics安装Anaconda、Pytorch(CPU版本)

一、Intel(R) Iris(R) Xe Graphics安装Anaconda 下载网址&#xff1a;https://repo.anaconda.com/archive/ 双击Anaconda3-2024.10-1-Windows-x86_64&#xff0c;一直下一步&#xff0c;选择安装的路径位置&#xff0c;一直下一步就安装完成了。打开Anaconda PowerShell Promp…

git使用教程(超详细)-透彻理解git

一.核心基础 核心概念有六个 首先请把与svn有关的一切概念暂时从你的脑海中移除掉&#xff0c;我们要重新认识本文所讲述的所有概念。 1.worktree worktree是一个目录&#xff0c;你在这里对文件进行增加、删除、修改。也就是我们常说的工作区。在git中worktree必须要与一个…

简单的Java小项目

学生选课系统 在控制台输入输出信息&#xff1a; 在eclipse上面的超级简单文件结构&#xff1a; Main.java package experiment_4;import java.util.*; import java.io.*;public class Main {public static List<Course> courseList new ArrayList<>();publi…