论文题目:Multipopulation Evolution-Based Dynamic Constrained Multiobjective Optimization Under Diverse Changing Environments
多种变化环境下基于多种群进化的动态约束多目标优化(Qingda Chen , Member, IEEE, Jinliang Ding , Senior Member, IEEE, Gary G. Yen , Fellow, IEEE, Shengxiang Yang , Senior Member, IEEE, and Tianyou Chai , Life Fellow, IEEE)IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 28, NO. 3, JUNE 2024
刚开始学习多目标优化算法,不作商业用途,如果有不正确的地方请指正!
个人总结:
2022年出的一篇文章和上次看的swarm的那边协同进化的分类有点像,
将种群划分为可行,不可行分为非支配不可行和支配不可行。
摘要
- 动态约束多目标优化涉及真实Pareto最优前沿分布的不规则变化,约束引起的可行域的剧烈变化,以及由于不同变化环境导致的最优距离变量的移动方向和大小。
- 提出了一种基于多种群进化的动态约束多目标优化算法。在该算法中,我们设计了一个部落分类算子,根据可行性检验和目标值将种群划分为不同的部落,这有利于驱动种群向可行域和帕累托最优前沿移动。
- 同时,提出一种种群选择策略,从部落中识别出有希望的解决方案,并利用它们来更新种群。距离变量的最优值随着动态环境的不同而变化,因此,我们为不同部落中的解设计了动态响应策略,以估计它们的距离以接近Pareto最优前沿,并重新生成有希望的解。
- 此外,设计了一个可扩展的生成器来模拟动态环境下真实世界问题中最优距离变量的不同运动方向和大小,得到一组改进的测试问题。
引言
距离变量的定义:帕累托最优解中的一个决策变量被认为是一个距离变量,如果改变x中的xi只能得到一个等于x、支配x或被x支配的决策向量(就是扰动以后只存在支配关系,收敛性决策变量)
动态约束多目标优化问题特征
1.时间变化下无约束PF和可行区域和真实PF都会发生变化
2.不可行解的数量随可行域波动,动态可行域的不规则边界使不可行解的评价值多样化。例如,图1 ( a )中的解E的约束违反度( CV )值大于图1 ( b )中的解E的CV值,但图1 ( a )中的解E更容易成为非支配解.
3.在动态环境下,DPOSs中距离变量的最优值在不同的方向和量级上移动,有的表现出剧烈的变化,有的则可能在较小的量级上移动,使得最优距离变量的移动方向和量级复杂化。
本文提出的想法
1。为了充分利用不同性能的解,特别是接近DPOF的解,本文提出了一种部落分类算子,将解按照其可行性和目标值划分到不同的部落中,驱使种群向真正的DPOF靠近。
2。本文设计了一种种群选择算子,根据支配算子从不可行部落中识别出的可行解和有希望的不可行解来更新种群,提高了种群的多样性和算法的寻优效率。
3。为了应对不同的变化环境,我们提出了一种动态响应策略来估计不同部落中向新的DPOF移动的距离变量的方向和大小,并根据评估值更新所有的解决方案,从而快速地更新靠近DPOF的初始化种群。
4。为了保证DCMOPs测试问题中的最优距离变量具有与现实问题一致的变化特性,我们设计了一个可扩展的生成器,在动态环境变化时,距离变量的最优值具有不同的移动方向和大小,测试了算法对DPOSs的跟踪能力。
背景及相关工作
A.DCMOP基础
B.约束处理技术
1.惩罚函数策略
2.分离目标和约束的方法
3.多目标制定
4.转化CMOPs的方法
5.混合方法
6.改变繁殖算子的方法
C.动态响应策略
提出框架与实施
A.mEDCMOA算法框架
B.初始化
算法初始化时,至少需要有一个可行解,否则就重新生成初始化种群。
C.部落分类算子
一些不可行解[如图1 ( a )中的解A , E和F]可能帮助目标值较大的可行解[例如,图1 ( a )中的解I]跟踪DPOFs,将其他不可行解[例如,图1 ( a )中的解J]推入可行域或靠近DPOFs。
提出了一种部落分类算子,根据可行性检验和目标值将种群划分为不同的部落。
首先根据可行性将种群划分为可行和不可行的(分别为FT和IT)部落,并利用非支配解选择算子从FT中更新AS
本文提出根据不可行解是否被非支配解支配将其划分到不同的部落中。,如果不可行解x的目标值不劣于非支配解的目标值,则称x为非支配不可行解;否则,x被认为是一个占优的不可行解。基于上述定义,将不可行解划分为支配和非支配不可行部落( DIT和NIT)。
D交配和种群选择算子
采用SBX和PM算子。
为了平衡算法的收敛速度和种群的多样性,本文提出了一种种群选择算子,在可行解数量不足的情况下,可以使用一些非支配和支配的不可行解来更新种群。
首先,清除若干部落(即FT、IT、DIT和NIT),并采用部落分类算子将P和Q中的解分类为FT、DIT和NIT。所有可行解都复制到一个空集NP上。
其次,如果非支配不可行解NIT 的数量大于N - | FT |,则将部分非支配不可行解NIT 推入NP,而不考虑支配不可行解。考虑到在靠近DPOFs [如图1 ( a )中的解F]的不可行解中的微小调整可能有助于它们成为可行解甚至非支配解,我们提出了一个支配算子来从NIT中选择N - | FT |非支配不可行解。具体来说,在具有最小目标函数的DCMOP中,NIT中具有大目标值的解更接近真实的DPOF。
E。动态响应策略
当环境发生变化时,通过修改不同部落中的先前解和随机解来重新生成初始种群。
首先,mEDCMOA通过初始化方法在变化的环境中随机产生N个解的一半,并重新计算之前解的目标值和CV值。所有解(即,随机的和先前的解决方案)由部落分类算子推送到不同的部落中。
其次,计算每个解的适应度值,确定每个部落中适应度值为0的解的 每个距离变量的调整方向和大小。
对于FT中适应度值为零的解,在该解的一个维度上增加一个正值δ。如果这个决策变量仍然在[ Lj , Uj],并且这个解的目标值中至少有一个被改进,那么δ被不断地添加到相应的维度中,直到这个个体不再被改进;否则,一维搜索策略按δ的值向该维度递减,δ在相应的维度上不断减小,直到该个体不再被改进。
计算出方向
修正