SABO-CNN-BiGRU-Attention减法优化器优化卷积神经网络结合双向门控循环单元时间序列预测,含优化前后对比

SABO-CNN-BiGRU-Attention减法优化器优化卷积神经网络结合双向门控循环单元时间序列预测,含优化前后对比

目录

    • SABO-CNN-BiGRU-Attention减法优化器优化卷积神经网络结合双向门控循环单元时间序列预测,含优化前后对比
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现SABO-CNN-BiGRU-Attention减法优化器优化卷积神经网络结合双向门控循环单元时间序列预测,含优化前后对比,含优化前后对比,含优化前后对比,要求Matlab2023版以上;
2.单变量时间序列预测;
3.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;
5.算法优化学习率,神经元个数,注意力机制的键值, 卷积核个数。

模型描述

SABO-CNN-BiGRU-Attention减法优化器优化卷积神经网络结合双向门控循环单元时间序列预测,含优化前后对比,含优化前后对比。

下面是这个模型的主要组成部分和工作流程的简要说明:

数据预处理:首先,对时间序列数据进行预处理。划分训练集和测试集等。

卷积神经网络(CNN):通过使用CNN,模型可以自动学习输入数据的空间特征。CNN通常由多个卷积层和池化层组成,可以有效地提取输入数据的局部特征。

双向门控循环单元(BiGRU):双向门控循环单元是一种适用于序列数据建模的循环神经网络(RNN)变体。双向门控循环单元具有记忆单元和门控机制,可以捕捉输入数据的长期依赖关系。通过双向门控循环单元层,模型可以学习序列数据的时间依赖性。

多头注意力机制(Mutilhead Attention):多头注意力机制允许模型同时关注输入序列的不同部分。它通过将序列数据映射到多个子空间,并计算每个子空间的注意力权重来实现这一点。这样可以提高模型对不同时间步和特征之间关系的建模能力。

减法优化器优化算法:减法优化器优化算法是一种基于智能的优化算法,可以用于调整模型的超参数和优化训练过程。通过应用减法优化器优化算法算法,可以提高模型的性能和收敛速度。

融合和预测:最后,通过融合CNN、BiGRU和多头注意力机制的输出,模型可以生成对未来时间步的多变量时间序列的预测。

需要注意的是,这是一种概念性的模型描述,具体实现的细节可能因应用场景和数据特征而有所不同。模型的性能和效果还需要根据具体问题进行评估和调优。

程序设计

  • 完整源码和数据获取方式SABO-CNN-BiGRU-Attention减法优化器优化卷积神经网络结合双向门控循环单元时间序列预测,含优化前后对比。
layers0 = [ ...% 输入特征sequenceInputLayer([numFeatures,1,1],'name','input')   %输入层设置sequenceFoldingLayer('name','fold')         %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。% CNN特征提取convolution2dLayer([3,1],16,'Stride',[1,1],'name','conv1')  %添加卷积层,641表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长batchNormalizationLayer('name','batchnorm1')  % BN层,用于加速训练过程,防止梯度消失或梯度爆炸reluLayer('name','relu1')       % ReLU激活层,用于保持输出的非线性性及修正梯度的问题% 池化层maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool')   % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式% 展开层sequenceUnfoldingLayer('name','unfold')       %独立的卷积运行结束后,要将序列恢复%平滑层flattenLayer('name','flatten')lstmLayer(25,'Outputmode','last','name','hidden1') selfAttentionLayer(2,2)          %创建2个头,2个键和查询通道的自注意力层  dropoutLayer(0.1,'name','dropout_1')        % Dropout层,以概率为0.2丢弃输入fullyConnectedLayer(1,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %regressionLayer('Name','output')    ];lgraph0 = layerGraph(layers0);
lgraph0 = connectLayers(lgraph0,'fold/miniBatchSize','unfold/miniBatchSize');
pNum = round( pop *  P_percent );    % The population size of the producers   lb= c.*ones( 1,dim );    % Lower limit/bounds/     a vector
ub= d.*ones( 1,dim );    % Upper limit/bounds/     a vector
%Initialization
for i = 1 : popx( i, : ) = lb + (ub - lb) .* rand( 1, dim );  fit( i ) = fobj( x( i, : ) ) ;                       
endpFit = fit;                       
pX = x; XX=pX;    
[ fMin, bestI ] = min( fit );      % fMin denotes the global optimum fitness value
bestX = x( bestI, : );             % bestX denotes the global optimum position corresponding to fMin% Start updating the solutions.
for t = 1 : M    [fmax,B]=max(fit);worse= x(B,:);   r2=rand(1);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%for i = 1 : pNum    if(r2<0.9)r1=rand(1);a=rand(1,1);if (a>0.1)a=1;elsea=-1;endx( i , : ) =  pX(  i , :)+0.3*abs(pX(i , : )-worse)+a*0.1*(XX( i , :)); % Equation (1)elseaaa= randperm(180,1);if ( aaa==0 ||aaa==90 ||aaa==180 )x(  i , : ) = pX(  i , :);   endtheta= aaa*pi/180;   x(  i , : ) = pX(  i , :)+tan(theta).*abs(pX(i , : )-XX( i , :));    % Equation (2)      endx(  i , : ) = Bounds( x(i , : ), lb, ub );    fit(  i  ) = fobj( x(i , : ) );end [ fMMin, bestII ] = min( fit );      % fMin denotes the current optimum fitness valuebestXX = x( bestII, : );             % bestXX denotes the current optimum position R=1-t/M;                           %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Xnew1 = bestXX.*(1-R); Xnew2 =bestXX.*(1+R);                    %%% Equation (3)Xnew1= Bounds( Xnew1, lb, ub );Xnew2 = Bounds( Xnew2, lb, ub );%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Xnew11 = bestX.*(1-R); Xnew22 =bestX.*(1+R);                     %%% Equation (5)Xnew11= Bounds( Xnew11, lb, ub );Xnew22 = Bounds( Xnew22, lb, ub );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  for i = ( pNum + 1 ) :12                  % Equation (4)x( i, : )=bestXX+((rand(1,dim)).*(pX( i , : )-Xnew1)+(rand(1,dim)).*(pX( i , : )-Xnew2));x(i, : ) = Bounds( x(i, : ), Xnew1, Xnew2 );fit(i ) = fobj(  x(i,:) ) ;end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/888572.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Java基础】集合

目录 CollectionListSet *重点&#xff1a; 底层机制&#xff08;源码&#xff09;应用场景 好处&#xff1a; 数组&#xff08;长度不可改&#xff0c;同一类型&#xff0c;增删不便&#xff09;集合&#xff08;动态保存&#xff0c;多种类型&#xff0c;方便操作&#xf…

实验3-实时数据流处理-Flink

1.前期准备 &#xff08;1&#xff09;Flink基础环境安装 参考文章&#xff1a; 利用docker-compose来搭建flink集群-CSDN博客 显示为这样就成功了 &#xff08;2&#xff09;把docker&#xff0c;docker-compose&#xff0c;kafka集群安装配置好 参考文章&#xff1a; …

Vue element表格导出excel

1.安装依赖 npm install xlsx file-saver --save 2.组件中导入 import FileSaver from file-saver import XLSX from xlsx tips&#xff1a;这里注意xlsx版本&#xff0c;如果报xlsx找不到utils&#xff0c;需要变更引入方式 import * as XLSX from xlsx 3.dom <el-…

详细解读CMA实验室认可

CMA实验室认可&#xff0c;即中国计量认证&#xff08;China Metrology Accreditation&#xff09;的实验室资质认定&#xff0c;以下是对其的详细解读&#xff1a; 一、定义与目的 CMA认证是经省级以上人民政府计量行政部门对实验室的计量检定、测试能力和可靠性考核合格后进…

javaweb-Mybaits

1.Mybaits入门 &#xff08;1&#xff09;介绍 &#xff08;2&#xff09; 2.Mybaits VS JDBC 3.数据库连接池 &#xff08;1&#xff09;SpringBoot默认连接池为hikari&#xff0c;切换为Druid有两种方式 方式一&#xff1a;加依赖 方式二&#xff1a;直接修改配置文件 …

数据挖掘之逻辑回归

逻辑回归&#xff08;Logistic Regression&#xff09;是数据挖掘中一种经典且广泛应用的算法&#xff0c;主要用于解决分类问题。尽管名字中带有“回归”&#xff0c;它的核心目标却是预测离散的类别&#xff0c;而不是连续的数值。逻辑回归凭借其简单、高效、易于解释的特性&…

Mybatis 关联查询

在 MyBatis 中&#xff0c;关联查询&#xff08;也称为复杂映射&#xff09;是指将多个表的数据通过 SQL 查询和结果映射的方式&#xff0c;组合成一个或多个 Java 对象。这种查询方式用于处理实体之间的关系&#xff0c;如一对一、一对多和多对多关系。通过关联查询&#xff0…

GPS模块/SATES-ST91Z8LR:电路搭建;直接用电脑的USB转串口进行通讯;模组上报定位数据转换地图识别的坐标手动查询地图位置

从事嵌入式单片机的工作算是符合我个人兴趣爱好的,当面对一个新的芯片我即想把芯片尽快搞懂完成项目赚钱,也想着能够把自己遇到的坑和注意事项记录下来,即方便自己后面查阅也可以分享给大家,这是一种冲动,但是这个或许并不是原厂希望的,尽管这样有可能会牺牲一些时间也有哪天原…

分布式光伏电站如何实现监控及集中运维管理?

安科瑞戴婷 Acrel-Fanny 前言 今年以来&#xff0c;在政策利好推动下光伏、风力发电、电化学储能及抽水蓄能等新能源行业发展迅速&#xff0c;装机容量均大幅度增长&#xff0c;新能源发电已经成为新型电力系统重要的组成部分&#xff0c;同时这也导致新型电力系统比传统的电…

大模型分类1—按应用类型

版权声明 本文原创作者:谷哥的小弟作者博客地址:http://blog.csdn.net/lfdfhl根据应用领域,大模型可分为自然语言处理、计算机视觉和多模态大模型。 1. 自然语言处理大模型(NLP) 1.1 应用领域与技术架构 自然语言处理大模型(NLP)的应用领域广泛,包括但不限于文本分类、…

2024 32kstar 的目前最佳开源RAG框架之一的 Langchain-Chatchat开源项目实践(一)

2024 32kstar 的目前最佳开源RAG框架之一的 Langchain-Chatchat开源项目实践&#xff08;一&#xff09; 文章目录 2024 32kstar 的目前最佳开源RAG框架之一的 Langchain-Chatchat开源项目实践&#xff08;一&#xff09;一、前言二、实践步骤1、软硬件要求&#xff08;1&#…

Spark 计算总销量

Spark 计算总销量 题目&#xff1a; 某电商平台存储了所有商品的销售数据&#xff0c;平台希望能够找到销量最好的前 N 个商品。通过分析销售记录&#xff0c;帮助平台决策哪些商品需要更多的推广资源。 假设你得到了一个商品销售记录的文本文件 product_id, product_name,…

西安理工大学丨ChatGPT助力学术论文写作训练营-助力发表SCI一区、二区

在当今学术研究中&#xff0c;科研人员在撰写论文时面临诸多挑战。首先是信息量的剧增&#xff0c;科研人员需要快速消化新知识&#xff0c;筛选相关信息并清晰表达。但论文写作不仅是信息的罗列&#xff0c;还需要条理清晰、逻辑严密、语言精准&#xff0c;特别是在竞争激烈的…

网络安全应急响应流程图

一、网络安全应急响应建设的背景和现状 当前&#xff0c;许多地区和单位已经初步建立了网络安全预警机制&#xff0c;实现了对一般网络安全事件的预警和处置。但是&#xff0c;由于网络与信息安全技术起步相对较晚&#xff0c;发展时间较短&#xff0c;与其他行业领域相比&…

2024 阿里云Debian12.8安装apach2【图文讲解】

1. 更新系统&#xff0c;确保您的系统软件包是最新的 sudo apt update sudo apt upgrade -y 2. 安装 Apache Web 服务器 apt install apache2 -y 3. 安装 PHP 及常用的扩展 apt install php libapache2-mod-php -y apt install php-mysql php-xml php-mbstring php-curl php…

vue2播放视频和预览文件的组件以及使用方法

##文件预览组件 按照组件 解决展示pdf的问题 npm install pdfh5 npm install canvas2.8.0 --ignore-scripts npm install --save dommatrix npm install --save web-streams-polyfill解决excel和docx预览的问题 npm install vue-office/docx vue-demi0.14.6 npm inst…

本地windows环境下,在vscode里将go项目打成docker镜像,并运行访问

此处只展示一个简单go代码实例. #前提:需要装好docker和golang环境,本地docker启动且配置好镜像源地址: # 容器镜像加速服务-云港网络 1.首先在vscode中写一个简单输出的demo go mod init &#xff0b;go mod tidy编译一下,命令运行如下: 2.使用命令生成Dockerfile文件 $ g…

GIT的使用方法以及汉化方法

1.下载git软件&#xff0c;可以从官网下载 下载后默认安装即可。 2.找到一个文件夹&#xff0c;或者直接打开gitbash gitbash可以使用cd指令切换目录的 打开后输入 git clone https:[git仓库的网页]即可克隆仓库 就是这个地址 克隆后即可使用代码 如果忘记了命令可以使用 -…

【Linux】Linux安全与密钥登录指南

在使用Linux服务器时&#xff0c;确保服务器的安全至关重要。本文将为你介绍一些关键的Linux安全措施&#xff0c;包括开启密钥登录、查看登录日志、限制登录IP以及查看系统中能够登录的账号。以下内容适合小白用户&#xff0c;通过简单的操作就能有效提升服务器的安全性。 目录…

前缀和(四)除自身以外数组的乘积

238. 除自身以外数组的乘积 给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&…