三维路径规划|基于黑翅鸢BKA优化算法的三维路径规划Matlab程序

三维路径规划|基于黑翅鸢BKA优化算法的三维路径规划Matlab程序

文章目录

  • 前言
    • 三维路径规划|基于黑翅鸢BKA优化算法的三维路径规划Matlab程序
      • 基于黑翅鸢BKA优化算法的三维路径规划
        • 一、研究基本原理
        • 二、黑翅鸢BKA优化算法的基本步骤:
        • 三、详细流程
        • 四、总结
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结


前言

三维路径规划|基于黑翅鸢BKA优化算法的三维路径规划Matlab程序

基于黑翅鸢BKA优化算法的三维路径规划

一、研究基本原理

三维路径规划问题是指在三维空间中,如何根据给定的起点、终点以及障碍物的分布,设计一条最优路径,通常要求路径满足以下条件:

  • 无碰撞:路径不应与障碍物相交。
  • 最短路径:路径长度最短,或者在某些应用中,可能需要考虑时间、能量等最优指标。
  • 平滑性:路径需要平滑,避免过多的急转弯。

黑翅鸢(Black Kite Algorithm, BKA)是一种仿生学优化算法,受黑翅鸢飞行和猎捕行为的启发而提出。BKA算法通过模拟黑翅鸢的飞行行为,包括滑翔、起飞、捕猎等动作来进行全局优化搜索。它是一种群体智能优化算法,具有较强的全局搜索能力和较快的收敛速度。BKA算法可以用于解决复杂的路径规划问题,特别是在高维空间中,如三维路径规划。

二、黑翅鸢BKA优化算法的基本步骤:
  1. 初始化:随机生成一定数量的个体(即黑翅鸢)的初始位置,这些位置通常代表路径上的候选点或路径的某些关键点。
  2. 适应度评估:计算每个个体的适应度,适应度通常是路径的质量,评估标准可能包括路径长度、平滑度、避障能力等。
  3. 黑翅鸢的飞行策略:根据黑翅鸢的猎物捕捉策略,调整个体的位置。飞行策略通常包含探索(全局搜索)和开发(局部搜索)两个阶段。
  4. 迭代更新:不断更新个体的位置,直到达到最大迭代次数或满足终止条件。
  5. 最优解:最终最优个体所代表的路径即为三维路径规划的解。
三、详细流程
  1. 问题建模

    • 将三维空间中的路径规划问题转化为一个优化问题,定义目标函数(例如路径长度最短,或者综合考虑多个目标,如平滑度和时间)。
    • 定义搜索空间中的障碍物,确保在路径规划过程中路径不与障碍物发生碰撞。
  2. 初始化种群

    • 随机初始化一定数量的黑翅鸢个体,这些个体在三维空间中随机生成初始位置,代表路径规划的解空间。
  3. 评估适应度

    • 每个个体的位置表示一条路径,通过计算路径的总长度和其他约束条件(如障碍物避让)来评估适应度。
  4. 飞行更新

    • 使用黑翅鸢的飞行行为模型来更新个体的位置。黑翅鸢通过滑翔来探测周围环境,并根据捕猎策略来调整位置。飞行的更新通常包含:
      • 探索阶段:个体在搜索空间中随机移动,目的是寻找全局最优解。
      • 开发阶段:个体围绕已知的最优解进行局部优化。
  5. 终止条件

    • 当满足某个终止条件(如达到最大迭代次数,或适应度达到预设阈值),算法停止。
  6. 输出最优路径

    • 输出当前最优解所对应的路径,即为最优三维路径。
四、总结
  1. 黑翅鸢BKA算法的应用
    BKA算法通过模拟黑翅鸢的捕猎和飞行行为,能够在复杂的三维空间中找到合适的路径。其优点在于较强的全局搜索能力,可以有效避免陷入局部最优解。

  2. Matlab实现
    基于BKA算法实现三维路径规划时,程序首先初始化个体的位置,然后通过适应度函数评估每个个体的路径质量,并通过模拟黑翅鸢的飞行策略更新个体位置。最后,通过迭代优化,最终找到最优路径。

  3. 应用前景
    这种路径规划方法广泛应用于无人机、机器人等领域,尤其在复杂环境中,BKA算法可以有效应对高维、非线性、动态变化的路径规划问题。

希望这个回答能够帮助你理解基于黑翅鸢BKA优化算法的三维路径规划的原理和流程。如果你有更具体的问题或需要进一步的代码优化,可以随时提出!

二、实验结果

在这里插入图片描述

三、核心代码

目标函数:


function [fit,result]=fitness(x,data)S=data.S0;
E=data.E0;
flag=x*0;
path=S;
map=data.map;
while sum(S==E)~=3% 可移动点nextN=repmat(S,length(data.direction(:,1)),1)+data.direction;% 剔除超界点flag=nextN(:,1)*0;for i=1:length(nextN(:,1))for j=1:3if nextN(i,j)<=0 ||nextN(i,j)>data.mapSize0(j)flag(i)=1;endendendposition=find(flag==1);nextN(position,:)=[];% 剔除不可移动点flag=nextN(:,1)*0;for i=1:length(nextN(:,1))no1=nextN(i,1);no2=nextN(i,2);no3=nextN(i,3);if map(no1,no2,no3)==1flag(i)=1;endendposition=find(flag==1);nextN(position,:)=[];if isempty(nextN)S=path(end-1,:);path(end,:)=[];continue;end%D1=nextN(:,1)*0;D2=nextN(:,1)*0;pri=nextN(:,1)*0;for i=1:length(nextN(:,1))no1=nextN(i,1);no2=nextN(i,2);no3=nextN(i,3);D1(i)=norm(nextN(i,:)-S);D2(i)=norm(nextN(i,:)-E);pri(i)=x(no1,no2,no3);end[~,no]=min((D1+D2).*pri.^0.5);path=[path;nextN(no,:)];S=nextN(no,:);map(S(1),S(2),S(3))=1;
end
end

四、代码获取

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/888230.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【问题】webdriver.Chrome()设置参数executable_path报不存在

场景1: 标红报错unresolved reference executable_path 场景2: 执行报错TypeError: __init__() got an unexpected keyword argument executable_path 原因&#xff1a; 上述两种场景是因为selenium4开始不再支持某些初始化参数。比如executable_path 解决&#xff1a; 方案…

Java - JSR223规范解读_在JVM上实现多语言支持

文章目录 1. 概述2. 核心目标3. 支持的脚本语言4. 主要接口5. 脚本引擎的使用执行JavaScript脚本执行groovy脚本1. Groovy简介2. Groovy脚本示例3. 如何在Java中集成 Groovy4. 集成注意事项 6. 与Java集成7. 常见应用场景8. 优缺点9. 总结 1. 概述 JSR223&#xff08;Java Spe…

无序抓取系列(一)

文章目录 一 摘要 二 资源 三 内容 一 摘要 最近&#xff0c;已经提出了许多抓取检测方法&#xff0c;这些方法可用于直接从传感器数据中定位机器人抓取配置&#xff0c;而无需估计物体姿态。其基本思想是将抓握感知视作计算机视觉中的对象检测。这些方法将噪声和部分遮挡的…

论文阅读:Deep divergence-based approach to clustering

论文地址&#xff1a;main.pdf (sciencedirectassets.com) 摘要 深度学习研究中的一个有前景的方向是通过优化判别损失函数&#xff0c;学习表示并同时发现无标签数据中的聚类结构。与监督式深度学习不同&#xff0c;这一研究方向尚处于起步阶段&#xff0c;如何设计和优化合适…

关于单片机的原理与应用!

成长路上不孤单&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a;&#x1f60a; 【14后&#x1f60a;///计算机爱好者&#x1f60a;///目前正在学习C&#x1f60a;///持续分享所学&#x1f60a;///如有需要欢迎收藏转发///&#x1f60a;】 今日分享关于单片…

Flink四大基石之CheckPoint(检查点) 的使用详解

目录 一、Checkpoint 剖析 State 与 Checkpoint 概念区分 设置 Checkpoint 实战 执行代码所需的服务与遇到的问题 二、重启策略解读 重启策略意义 代码示例与效果展示 三、SavePoint 与 Checkpoint 异同 操作步骤详解 四、总结 在大数据流式处理领域&#xff0c;Ap…

字典树TRIE

模板 模板总共分为两部分 插入一个字符串查找一个字符串 int idx 0; int trie[3000010][150]; int ans[3000010];##原理 trie[上节点编号][下方连接的字母] 下方连接的字母的节点编号 trie[0][0]1;trie[0][1]5; trie[1][1]2; trie[2][1]4;trie[2][2]3; trie[5][2]6; tri…

【MySQL-6】MySQL的复合查询

1. 整体学习的思维导图 2. 回顾基本查询 使用scott数据库中的表&#xff0c;完成以下查询&#xff1a; 查询工资高于500或岗位为MANAGER的雇员&#xff0c;同时还要满足他们的姓名首字母为大写的J mysql> select * from emp where (sal>500 or jobMANAGER) and ename …

STL算法之其它算法_中

目录 lower_bound(应用于有序区间) upper_bound&#xff08;应用于有序区间&#xff09; binary_search&#xff08;应用于有序区间&#xff09; next_permutation prev_permutation lower_bound(应用于有序区间) 这是二分查找(binary search)的一种版本&#xff0c;试图在…

[高阶数据结构六]最短路径算法

1.前言 最短路径算法是在图论的基础上讲解的&#xff0c;如果你还不知道图论的相关知识的话&#xff0c;可以阅读下面几篇文章。 [高阶数据结构四] 初始图论_初始图结构-CSDN博客 [高阶数据结构五] 图的遍历和最小生成树_图的遍历和生成树求解-CSDN博客 本章重点&#xff1a;…

uniapp:封装商品列表为组件并使用

封装商品列表为组件并使用 商品组件封装 <template><!-- 商品列表 --><view class"goods_list"><view class"goods_item" v-for"item in goods" :key"item.id"><image :src"item.img_url">…

【AI系统】LLVM 架构设计和原理

LLVM 架构设计和原理 在上一篇文章中&#xff0c;我们详细探讨了 GCC 的编译过程和原理。然而&#xff0c;由于 GCC 存在代码耦合度高、难以进行独立操作以及庞大的代码量等缺点。正是由于对这些问题的意识&#xff0c;人们开始期待新一代编译器的出现。在本节&#xff0c;我们…

【C语言】结构体(二)

一&#xff0c;结构体的初始化 和其它类型变量一样&#xff0c;对结构体变量可以在定义时指定初始值 #include <stdio.h> #include <stdlib.h> struct books // 结构体类型 {char title[50];char author[50]; //结构体成员char subject[100];int book_id; }…

四、初识C语言(4)

一、作业&#xff1a;static修饰局部变量 #define _CRT_SECURE_NO_WARNINGS 1 #include <stdio.h> #include <string.h> //作业&#xff1a;static修饰局部变量 int sum (int a) {int c 0;static int b 3;c 1;b 2;return (abc); } int main() {int i 0;int a …

Linux 中的 ls 命令:从使用到源码解析

ls 命令是 Linux 系统中最常用和最基本的命令之一。下面将深入探讨 ls 命令的使用方法、工作原理、源码解析以及实际应用场景。 1. ls 命令的使用** ls 命令用于列出目录内容&#xff0c;显示文件和目录的详细信息。 1.1 基本用法 ls [选项] [文件或目录]例如&#xff1a; …

The selected directory is not a valid home for Go SDK

在idea里配置go语言的环境时&#xff0c;选择go语言的安装目录&#xff0c;一直提示这个 The selected directory is not a valid home for Go SDK后来查了一下&#xff0c;发现原来idea识别不出来 需要改一下配置文件&#xff0c;找到go环境的安装目录&#xff0c;我是默认安…

Leetcode581. 最短无序连续子数组(HOT100)

链接 我的代码&#xff1a; class Solution { public:int findUnsortedSubarray(vector<int>& nums) {vector<int> res nums;sort(res.begin(),res.end());int l 0,r nums.size()-1;while(nums[l]res[l]){l;if(lnums.size()){return 0;}}while(nums[r]res…

SQL优化与性能——数据库事务管理

数据库事务管理是数据库系统中至关重要的一部分&#xff0c;确保了数据的一致性、完整性、可靠性和隔离性。尤其在高并发、高负载的系统中&#xff0c;事务管理的设计和实现直接影响到系统的稳定性和性能。本章将详细探讨以下内容&#xff1a;事务的ACID特性、使用 BEGIN、COMM…

【Robocasa】Code Review

文章目录 OverviewalgoInitializationImportant Class MethodsTrain LoopTest Time ConfigsdemoConfig FactoryConfig StructureConfig Locking默认锁定状态配置修改的上下文管理器 dataset示例数据集对象参数说明 model基础模块EncoderCoreVisualCoreScanCore随机化器 (Random…

【单细胞数据库】癌症单细胞数据库CancerSEA

数据库地址&#xff1a;home (hrbmu.edu.cn) Cite Huating Yuan, Min Yan, Guanxiong Zhang, Wei Liu, Chunyu Deng, Gaoming Liao, Liwen Xu, Tao Luo, Haoteng Yan, Zhilin Long, Aiai Shi, Tingting Zhao, Yun Xiao, Xia Li, CancerSEA: a cancer single-cell state atlas…