openssl使用哈希算法生成随机密钥

文章目录

  • 一、openssl中随机数函数
      • **OpenSSL 随机数函数概览**
        • 1. **核心随机数函数**
      • **常用函数详解**
        • 1. `RAND_bytes`
        • 2. `RAND_priv_bytes`
        • 3. `RAND_seed` 和 `RAND_add`
        • 4. `RAND_status`
      • **随机数生成器的熵池**
      • **常见用例**
      • **注意事项**
  • 二、使用哈希算法生成随机的密钥


一、openssl中随机数函数

OpenSSL 提供了一套功能强大的随机数生成函数,用于生成高质量的伪随机数。随机数在密码学中至关重要,广泛用于密钥生成、盐值生成、初始化向量 (IV) 等安全操作。


OpenSSL 随机数函数概览

1. 核心随机数函数
函数名称描述
RAND_bytes生成高质量的伪随机字节。
RAND_priv_bytes生成高质量伪随机字节,推荐用于对安全性要求更高的密钥生成。
RAND_pseudo_bytes生成伪随机字节(不保证是加密级别安全,已被弃用)。
RAND_seed手动为伪随机数生成器添加种子值。
RAND_add添加额外的熵(种子数据)到伪随机数生成器的池中。
RAND_status检查随机数生成器是否被正确初始化。
RAND_poll自动收集熵以初始化随机数生成器(由内部调用)。

常用函数详解

1. RAND_bytes
  • 作用:生成高质量的加密级别伪随机字节。

  • 函数原型

    int RAND_bytes(unsigned char *buf, int num);
    
    • buf:指向用于存储随机字节的缓冲区。
    • num:要生成的随机字节数。
    • 返回值
      • 成功返回 1
      • 如果随机数生成器未正确初始化,返回 0
  • 示例

    unsigned char random_bytes[16];
    if (RAND_bytes(random_bytes, sizeof(random_bytes)) == 1) {printf("生成的随机数:");for (int i = 0; i < sizeof(random_bytes); i++) {printf("%02x", random_bytes[i]);}printf("\n");
    } else {fprintf(stderr, "随机数生成失败!\n");
    }
    

2. RAND_priv_bytes
  • 作用:与 RAND_bytes 类似,但专为高安全性应用设计(如密钥生成)。可能在实现中增加额外的保护。
  • 函数原型
    int RAND_priv_bytes(unsigned char *buf, int num);
    
  • 使用方法与 RAND_bytes 一致。

3. RAND_seedRAND_add
  • 作用:为随机数生成器添加种子值或熵,增强其随机性。
    OpenSSL 的随机数生成器依赖熵池,通常会自动初始化,但可以通过这些函数手动添加种子数据。

  • 函数原型

    void RAND_seed(const void *buf, int num);
    void RAND_add(const void *buf, int num, double entropy);
    
    • buf:种子数据。
    • num:种子数据的字节数。
    • entropy:种子中估计的熵(单位是比特,范围 0 到 8*num)。
  • 示例

    unsigned char seed_data[] = {0x12, 0x34, 0x56, 0x78};
    RAND_seed(seed_data, sizeof(seed_data));
    

4. RAND_status
  • 作用:检查随机数生成器是否被正确初始化。

  • 函数原型

    int RAND_status(void);
    
    • 返回值
      • 如果熵池已初始化且可用随机性足够,返回 1
      • 否则返回 0
  • 示例

    if (RAND_status() == 1) {printf("随机数生成器已初始化!\n");
    } else {printf("随机数生成器未初始化!\n");
    }
    

随机数生成器的熵池

OpenSSL 的随机数生成器使用熵池作为随机性的来源,依赖于系统提供的随机性(如 /dev/random/dev/urandom)。在大多数情况下,OpenSSL 会自动处理熵池的初始化,但开发者可以通过 RAND_seedRAND_add 提供额外的种子数据。


常见用例

  1. 生成随机密钥

    unsigned char key[32]; // 256 位密钥
    if (RAND_bytes(key, sizeof(key)) == 1) {printf("密钥生成成功!\n");
    }
    
  2. 生成随机初始化向量 (IV)

    unsigned char iv[16]; // 128 位 IV
    if (RAND_bytes(iv, sizeof(iv)) == 1) {printf("IV 生成成功!\n");
    }
    
  3. 增强随机数生成器熵

    unsigned char extra_entropy[] = {0xde, 0xad, 0xbe, 0xef};
    RAND_add(extra_entropy, sizeof(extra_entropy), 4.0); // 添加 4 比特熵
    

注意事项

  1. 使用 RAND_bytesRAND_priv_bytes

    • 推荐使用这两个函数生成随机数,因为它们提供加密级别的安全性。
    • 不建议使用 RAND_pseudo_bytes,因为它已被弃用。
  2. 熵的重要性

    • 高质量的熵是随机数生成的核心。如果熵不足,生成的随机数可能会被预测,降低安全性。
  3. 平台依赖

    • OpenSSL 的随机数生成器在不同平台上依赖系统的熵源,例如 /dev/urandom 或 Windows 的 CryptGenRandom。

OpenSSL 的随机数生成函数设计灵活,满足了从简单随机需求到高安全性应用的各种场景。如果需要更高安全性的随机数生成,推荐使用 RAND_priv_bytes

二、使用哈希算法生成随机的密钥

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/rand.h>
#include <openssl/evp.h>#define SEED_LENGTH 32  // 随机种子长度(32 字节 = 256 位)
#define KEY_LENGTH 32   // 密钥长度(32 字节 = 256 位)// 使用随机种子和哈希算法生成密钥
void generate_hashed_key(unsigned char *key, size_t key_length) {unsigned char seed[SEED_LENGTH]; // 随机种子// 生成随机种子if (!RAND_bytes(seed, sizeof(seed))) {fprintf(stderr, "随机种子生成失败!\n");exit(EXIT_FAILURE);}// 打印随机种子(调试用)printf("随机种子: ");for (size_t i = 0; i < sizeof(seed); i++) {printf("%02x", seed[i]);}printf("\n");// 使用 SHA-256 哈希函数对种子进行散列EVP_MD_CTX *mdctx = EVP_MD_CTX_new(); // 创建哈希上下文if (!mdctx) {fprintf(stderr, "创建哈希上下文失败!\n");exit(EXIT_FAILURE);}// 初始化哈希计算(使用 SHA-256)if (EVP_DigestInit_ex(mdctx, EVP_sha256(), NULL) != 1) {fprintf(stderr, "哈希初始化失败!\n");EVP_MD_CTX_free(mdctx);exit(EXIT_FAILURE);}// 提供数据进行哈希计算if (EVP_DigestUpdate(mdctx, seed, sizeof(seed)) != 1) {fprintf(stderr, "哈希更新失败!\n");EVP_MD_CTX_free(mdctx);exit(EXIT_FAILURE);}// 获取哈希结果unsigned char hash[EVP_MAX_MD_SIZE];unsigned int hash_len;if (EVP_DigestFinal_ex(mdctx, hash, &hash_len) != 1) {fprintf(stderr, "哈希计算失败!\n");EVP_MD_CTX_free(mdctx);exit(EXIT_FAILURE);}// 释放哈希上下文EVP_MD_CTX_free(mdctx);// 取哈希结果的前 key_length 字节作为密钥if (key_length > hash_len) {fprintf(stderr, "密钥长度超出哈希值长度!\n");exit(EXIT_FAILURE);}memcpy(key, hash, key_length);// 打印生成的密钥(调试用)printf("生成的密钥: ");for (size_t i = 0; i < key_length; i++) {printf("%02x", key[i]);}printf("\n");
}int main() {unsigned char key[KEY_LENGTH]; // 存储生成的密钥// 调用密钥生成函数generate_hashed_key(key, KEY_LENGTH);return 0;
}

运行两次的结果:

这里可以看到每次运行后生成的密钥都是不一样的,这样就保证了密钥的不一致性。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/888067.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大模型翻译能力评测

1. 背景介绍 随着自然语言处理技术的飞速发展&#xff0c;机器翻译已经成为一个重要的研究领域。近年来&#xff0c;基于大模型的语言模型在机器翻译任务上取得了显著的进展。这些大模型通常具有数亿甚至数千亿的参数&#xff0c;能够更好地理解和生成自然语言。 但是&#xf…

刷题日常(找到字符串中所有字母异位词,​ 和为 K 的子数组​,​ 滑动窗口最大值​,全排列)

找到字符串中所有字母异位词 给定两个字符串 s 和 p&#xff0c;找到 s 中所有 p 的 异位词的子串&#xff0c;返回这些子串的起始索引。不考虑答案输出的顺序。 题目分析&#xff1a; 1.将p里面的字符先丢进一个hash1中&#xff0c;只需要在S字符里面找到多少个和他相同的has…

【汇编语言】call 和 ret 指令(三) —— 深度解析汇编语言中的批量数据传递与寄存器冲突

文章目录 前言1. 批量数据的传递1.1 存在的问题1.2 如何解决这个问题1.3 示例演示1.3.1 问题说明1.3.2 程序实现 2. 寄存器冲突问题的引入2.1 问题引入2.2 分析与解决问题2.2.1 字符串定义方式2.2.2 分析子程序功能2.2.3 得到子程序代码 2.3 子程序的应用2.3.1 示例12.3.2 示例…

青训营-豆包MarsCode技术训练营试题解析九

介绍 ‌豆包青训营‌是由字节跳动和稀土掘金社区共同发起的技术培训和人才选拔项目&#xff0c;主要面向在校大学生。该项目的目标是培养具有职业竞争力的优秀开发工程师&#xff0c;并提供全程免费的课程&#xff0c;不收取任何费用‌。 课程内容和方向 豆包青训营的课程涵…

前端的面试题

1.常用的块与行属性内标签有哪些&#xff1f;有什么特征&#xff1f; 块标签&#xff1a;div、h1~h6、ul、li、table、p、br、form。 特征&#xff1a;独占一行&#xff0c;换行显示&#xff0c;可以设置宽高&#xff0c;可以嵌套块和行 行标签&#xff1a;span、a、img、text…

`asyncio.wait` 和 `asyncio.gather` 的区别

asyncio.wait 和 asyncio.gather 的区别 1. asyncio.wait2. asyncio.gather主要区别总结 在Python的异步编程中&#xff0c;asyncio.wait 和 asyncio.gather 都是用于等待多个异步任务完成的工具&#xff0c;但它们在功能和使用方式上有一些关键的区别。本文将详细解释这两个函…

48-基于单片机的LCD12864时间调控和串口抱站

目录 一、主要功能 二、硬件资源 三、程序编程 四、实现现象 一、主要功能 基于51单片机的公交报站系统&#xff0c;可以手动报站&#xff0c;站名十个。 在lcd12864上显示时间&#xff08;年月日时分秒&#xff09;和站名&#xff0c;时间可以设置&#xff0c; 仿真中可以…

如何为 XFS 文件系统的 /dev/centos/root 增加 800G 空间

如何为 XFS 文件系统的 /dev/centos/root 增加 800G 空间 一、前言二、准备工作三、扩展逻辑卷1. 检查现有 LVM 配置2. 扩展物理卷3. 扩展卷组4. 扩展逻辑卷四、调整文件系统大小1. 检查文件系统状态2. 扩展文件系统五、处理可能出现的问题1. 文件系统无法扩展2. 磁盘空间不足3…

爬虫框架快速入门——Scrapy

适用人群&#xff1a;零基础、对网络爬虫有兴趣但不知道从何开始的小白。 什么是 Scrapy&#xff1f; Scrapy 是一个基于 Python 的网络爬虫框架&#xff0c;它能帮助你快速爬取网站上的数据&#xff0c;并将数据保存到文件或数据库中。 特点&#xff1a; 高效&#xff1a;支…

Redis 分布式锁实现方案

一、概述 分布式锁&#xff0c;即分布式系统中的锁。在单体应用中我们通过锁解决的是控制共享资源访问的问题&#xff0c;而分布式锁&#xff0c;就是解决了分布式系统中控制共享资源访问的问题。与单体应用不同的是&#xff0c;分布式系统中竞争共享资源的最小粒度从线程升级…

前端node.js

一.什么是node.js 官网解释:Node.js 是一个开源的、跨平台的 JavaScript 运行时环境。 二.初步使用node.js 需要区分开的是node.js和javascript互通的只有console和定时器两个API. 三.Buffer Buffer 是一个类似于数组的 对象&#xff0c;用于表示固定长度的字节序列。Buffer…

Python中字符串和正则表达式

Python中字符串和正则表达式 在Python编程中&#xff0c;字符串是最常用的数据类型之一。字符串用于表示文本数据&#xff0c;而正则表达式则是一种强大的工具&#xff0c;用于处理和匹配字符串中的模式。本文将介绍Python中的字符串操作、字符串格式化以及如何使用正则表达式…

构造函数与析构函数错题汇总

构造函数不能定义返回类型&#xff0c;也没有返回类型。 堆、栈、静态存储区。栈上的对象main函数结束就释放&#xff0c;堆上的需要手动释放&#xff0c;静态存储区的在所在作用域的程序结束时释放。这里static在main函数内&#xff0c;是局部变量&#xff0c;所以作用域为…

Nginx和Apache有什么异同?

Nginx和Apache都是广泛使用的Web服务器软件&#xff0c;它们各自具有独特的特点和优势&#xff0c;适用于不同的应用场景。以下是关于Nginx和Apache的不同、相同以及使用区别的详细分析&#xff1a; 一、不同点 资源占用与并发处理能力&#xff1a; Nginx使用更少的内存和CPU资…

SQL基础入门——SQL基础语法

1. 数据库、表、列的创建与管理 在SQL中&#xff0c;数据库是一个数据的集合&#xff0c;包含了多个表、视图、索引、存储过程等对象。每个表由若干列&#xff08;字段&#xff09;组成&#xff0c;表中的数据行代表记录。管理数据库和表的结构是SQL的基础操作。 1.1 创建数据…

c语言编程1.17蓝桥杯历届试题-回文数字

题目描述 观察数字&#xff1a;12321&#xff0c;123321 都有一个共同的特征&#xff0c;无论从左到右读还是从右向左读&#xff0c;都是相同的。这样的数字叫做&#xff1a;回文数字。 本题要求你找到一些5位或6位的十进制数字。满足如下要求&#xff1a; 该数字的各个数位之…

亚马逊自研大语言模型 Olympus 即将亮相,或将在 LLM 竞赛中掀起新波澜

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

自然语言处理期末试题汇总

建议自己做&#xff0c;写完再来对答案。答案可能存在极小部分错误&#xff0c;不保证一定正确。 一、选择题 1-10、C A D B D B C D A A 11-20、A A A C A B D B B A 21-30、B C C D D A C A C B 31-40、B B B C D A B B A A 41-50、B D B C A B B B B C 51-60、A D D …

腾讯微众银行大数据面试题(包含数据分析/挖掘方向)面试题及参考答案

为什么喜欢使用 XGBoost,XGBoost 的主要优势有哪些? XGBoost 是一个优化的分布式梯度增强库,在数据科学和机器学习领域应用广泛,深受喜爱,原因主要在于其众多突出优势。 首先,它的精度高,在许多机器学习竞赛和实际应用中,XGBoost 都展现出卓越的预测准确性。其基于决策…

深度学习——激活函数

一、人工神经元 1.1 构建人工神经元 人工神经元接受多个输入信息&#xff0c;对它们进行加权求和&#xff0c;再经过激活函数处理&#xff0c;最后将这个结果输出。 1.2 组成部分 输入&#xff08;Inputs&#xff09;: 代表输入数据&#xff0c;通常用向量表示&#xff0c;每…