GPT(Generative Pre-trained Transformer) 和 Transformer的比较

GPT(Generative Pre-trained Transformer)Transformer 的比较

flyfish

1. Transformer 是一种模型架构

Transformer 是一种通用的神经网络架构,由 Vaswani 等人在论文 “Attention Is All You Need”(2017)中提出。其核心特点是完全基于注意力机制(Self-Attention)进行信息建模,去除了传统的 RNN/CNN 结构。

Transformer 的关键特点
  • 结构分为两部分
    1. 编码器(Encoder):将输入序列映射为上下文相关的隐藏表示。
    2. 解码器(Decoder):根据编码器输出和先前的目标序列生成新的序列(如翻译、文本生成)。
  • 核心模块
    • 多头自注意力机制(Multi-Head Self-Attention):捕捉输入序列中不同部分的关系。
    • 位置编码(Positional Encoding):补偿 Transformer 缺乏序列信息的短板。
    • 前馈神经网络(Feed-Forward Networks, FFN):对注意力输出进一步处理。
    • 层归一化和残差连接(Layer Normalization & Residual Connections):缓解深层网络训练难题。
Transformer 的用途
  • 通用框架:Transformer 可以用于任意需要序列到序列建模的任务,比如机器翻译、文本分类、问答系统等。

2. GPT 是一种基于 Transformer 的特化模型

GPT 是 OpenAI 在 Transformer 架构基础上进行设计和优化的一种特化模型,用于生成任务(如语言建模和文本生成)。

GPT 的特点
  1. 仅使用 Transformer 的解码器部分

    • GPT 舍弃了完整 Transformer 的编码器-解码器结构,仅保留了解码器。
    • 解码器适用于自回归任务(Autoregressive Tasks),即依赖之前的上下文生成下一步输出。
  2. 自回归生成方式

    • GPT 是通过自回归语言建模(Autoregressive Language Modeling)训练的,预测下一个单词的概率:
      P ( x 1 , x 2 , … , x T ) = ∏ t = 1 T P ( x t ∣ x 1 , x 2 , … , x t − 1 ) P(x_1, x_2, \dots, x_T) = \prod_{t=1}^{T} P(x_t | x_1, x_2, \dots, x_{t-1}) P(x1,x2,,xT)=t=1TP(xtx1,x2,,xt1)
  3. 预训练和微调

    • 预训练(Pretraining):在大规模无监督文本语料上进行语言建模训练,捕捉通用语言知识。
    • 微调(Fine-tuning):在具体任务上使用监督数据进行调整,使模型适应特定任务。
  4. 改进的训练技巧

    • GPT 引入了一些针对解码器的优化,比如改进的初始化、梯度截断、动态批量大小调整等。

3. 核心区别

方面TransformerGPT
结构编码器 + 解码器仅使用解码器
训练目标通用,适配不同任务自回归语言建模(预测下一个词)
适用任务序列到序列任务(翻译、分类、问答等)文本生成、对话、补全
输入依赖输入序列可以双向(编码器)或单向(解码器)输入序列只能是单向(自回归)
位置编码方式标准位置编码类似,但可以调整为适配任务的变体
应用扩展通用框架,用于 NLP、CV 等领域专注于语言生成,适配特定的下游任务

4. GPT 和 Transformer 的关系

  • GPT 是 Transformer 的子集:GPT 基于 Transformer 的解码器部分设计,是一种专注于生成任务的特化模型。
  • 架构优化:虽然 GPT 继承了 Transformer 的基本架构,但针对生成任务和大规模预训练场景进行了优化。
  • 功能聚焦:Transformer 是通用的序列建模工具,而 GPT 是针对语言生成任务的具体实现。

解释GPT 只有解码器的原因

1. Transformer 的全貌:编码器和解码器

Transformer 是一种深度学习架构,由 编码器(Encoder)解码器(Decoder) 组成。这种架构最初由 Vaswani 等人在 2017 年提出,专门为序列到序列(Seq2Seq)任务设计,如机器翻译。我们先来看这两个部分的功能:

1.1 编码器(Encoder)

编码器的任务是将输入序列(如原文句子)转换为一组上下文相关的表示(高维向量),捕捉输入序列的语义。

  • 输入:输入序列 ( X = (x_1, x_2, …, x_n) )。
  • 处理
    • 利用注意力机制(Self-Attention)计算输入序列中不同位置的关联关系。
    • 输出一组高维向量,代表输入序列的上下文语义。
  • 输出:编码后的表示(Contextual Representation)。
1.2 解码器(Decoder)

解码器的任务是根据编码器的输出和已生成的部分序列,逐步生成目标序列。

  • 输入
    1. 编码器的输出(从输入序列提取的语义)。
    2. 当前已生成的目标序列(作为解码器的上下文)。
  • 处理
    • 结合编码器输出和解码器内部的自注意力(Self-Attention),捕捉上下文关系。
    • Masking 机制确保生成是因果性的:当前生成位置不能访问未来位置。
  • 输出:目标序列(如翻译后的句子)。

2. Transformer 的典型任务:机器翻译

Transformer 最初设计是为了解决机器翻译问题,比如将一个法语句子翻译成英语。这需要两个关键步骤:

  1. 编码器提取原句的语义表示。
  2. 解码器利用这些语义信息,生成目标语言的句子。

举例:

  • 输入(法语):Je mange une pomme.
  • 编码器输出:句子的语义表示(向量)。
  • 解码器生成(英语):I am eating an apple.

因此,编码器负责理解,解码器负责生成。


3. GPT 的目标任务:语言生成

GPT 的目标并不是像机器翻译那样,需要对输入语句进行“理解”后生成目标语句。GPT 是一个语言生成模型,其任务是根据已给定的上下文生成下一步的输出

3.1 任务特点
  • GPT 只需要一个输入序列(上下文),然后从头到尾生成输出序列。
  • 生成是逐步进行的,比如:
    • 输入:Once upon a time, there was a king who
    • 输出:Once upon a time, there was a king who ruled a prosperous kingdom.
3.2 自回归建模

GPT 使用自回归语言建模(Autoregressive Language Modeling),它的核心是逐步预测下一个单词 (x_t),只依赖前面的单词:
P ( x 1 , x 2 , … , x T ) = ∏ t = 1 T P ( x t ∣ x 1 , x 2 , … , x t − 1 ) P(x_1, x_2, \dots, x_T) = \prod_{t=1}^T P(x_t | x_1, x_2, \dots, x_{t-1}) P(x1,x2,,xT)=t=1TP(xtx1,x2,,xt1)
这种逐步预测的方法是一个典型的生成过程。


4. 为什么只保留解码器?

GPT 将 Transformer 的架构调整为仅保留了解码器,这是因为它的任务特点决定了编码器是冗余的,解码器已经完全能满足需求。以下分几个方面详细展开:

4.1 编码器的角色对 GPT 的任务无用

编码器的主要作用是压缩输入序列,提取全局语义信息。这对于翻译、文本分类等任务至关重要,但对于语言生成来说:

  • 输入序列就是生成序列的上下文,它直接参与生成过程。
  • GPT 不需要“理解”或“压缩”输入,只需在每一步基于已有上下文生成下一个单词。
  • 解码器通过自注意力机制(Self-Attention)已经能够捕捉输入的上下文信息,无需编码器额外的处理。
4.2 解码器的 Masked Attention

解码器内置的 Masked Attention 机制确保生成过程是因果一致的,即预测当前单词时只依赖于之前的单词。这种设计让解码器能够单独完成生成任务,而不需要编码器的辅助。

4.3 简化架构,提高效率
  • 如果保留编码器,模型需要处理输入的编码以及解码器与编码器的交互,增加计算复杂度。
  • 去掉编码器后,模型的参数更少,训练和推理更高效。
4.4 专注生成任务

GPT 的设计目标是生成自然语言,而不是在输入和输出之间建立映射(如翻译任务)。解码器专注于生成,符合语言建模任务的特点。


5. 解码器如何完成任务?

只保留解码器的 GPT 通过以下机制完成语言生成:

5.1 自注意力(Self-Attention)
  • 让解码器能够动态捕捉输入序列中各单词之间的关联关系。
  • 对于生成任务,自注意力允许模型根据上下文生成连贯的文本。
5.2 Masked Self-Attention
  • 屏蔽掉当前位置之后的单词,确保生成符合因果性。
  • 每一步生成只依赖于之前生成的部分。
5.3 多层解码器堆叠
  • 解码器的多层结构让模型能够捕捉更深层次的语言模式,如句法结构、语义关联等。
5.4 Softmax 输出与下一个单词的采样
  • 解码器最后通过 Softmax 生成下一个单词的概率分布。
  • 根据概率采样(或选择最大概率)生成最终的输出。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/888006.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Qt 项目中同时使用 CMAKE_AUTOUIC 和 UiTools 的注意事项

在 Qt 项目开发中,.ui 文件是界面设计的重要组成部分。开发者可以通过两种主要方式使用 .ui 文件: 编译期处理:通过 Qt 的 uic 工具将 .ui 文件转化为 C 代码(ui_xxx.h),静态绑定到项目中。运行时动态加载…

gitee:解决vs文件权限被拒问题

报错问题 分析原因 git上传要忽略vs文件, Git因致命错误而失败。权限被拒绝 无法处理的路径。 解决方法 1、项目根目录下->右击空白->Open Git Bash here 2、 创建.gitignore文件 命令 touch .gitignore 3、 文件开头输入 .vs保存 参考地址 VS2017 Git fa…

【03】Selenium+Python 八种定位元素方法

操作元素,需要先查找定位到对应的元素。 查找单个元素:driver.find_element() 返回是一个web element 对象 查找多个元素:driver.find_elements() 返回是一个list对象 By 是 Selenium 中一个非常重要的类,用于定位网页元素。 使…

【linux学习指南】详解Linux进程信号保存

文章目录 📝保存信号🌠 信号其他相关常⻅概念🌉在内核中的表⽰ 🌠 sigset_t🌠信号集操作函数🌉sigprocmask🌉sigpending 🚩总结 📝保存信号 🌠 信号其他相关常…

Java安全—原生反序列化重写方法链条分析触发类

前言 在Java安全中反序列化是一个非常重要点,有原生态的反序列化,还有一些特定漏洞情况下的。今天主要讲一下原生态的反序列化,这部分内容对于没Java基础的来说可能有点难,包括我。 序列化与反序列化 序列化:将内存…

搭建一个基于Web的文档管理系统,用于存储、共享和协作编辑文档

搭建一个基于Web的文档管理系统,用于存储、共享和协作编辑文档 本项目采用以下架构: NFS服务器: 负责存储文档资料。Web服务器: 负责提供文档访问和编辑功能。SELinux: 负责权限控制,确保文档安全。Git服务器: 负责存储文档版本历史&#x…

智能堆叠,集群和IRF

堆叠和IRF其实可以近似看成同一种技术,只是华三叫IRF,华为叫智能堆叠 智能堆叠(iStack):支持堆叠特性的交换机通过堆叠线缆连接在一起,从逻辑上变成一台交换设备,作为一个整体参与数据转发&…

Oracle-—系统包使用

文章目录 系统包dbms_redefinition 系统包 dbms_redefinition 功能介绍:该包体可以实现将Oracle库下的表在线改为分区结构或者重新定义; 说明:在检查表是否可以重定义和开始重定义的过程中,按照表是否存在主键,参数 o…

k8s 亲和性之Affinity

文章目录 1. Node Affinity(节点亲和性)节点亲和性类型配置示例常见场景: 2. Pod Affinity 和 Pod Anti-AffinityPod Affinity 配置示例Pod Anti-Affinity 配置示例常见场景: 3. 亲和性规则概述4. 亲和性和反亲和性的细节5. 亲和性…

go使用mysql实现增删改查操作

1、安装MySQL驱动 go get -u github.com/go-sql-driver/mysql2、go连接MySQL import ("database/sql""log"_ "github.com/go-sql-driver/mysql" // 导入 mysql 驱动 )type Users struct {ID intName stringEmail string }var db *sql.DBfu…

Flutter实现简单Tag效果

前置知识点整理 Wrap 在 Flutter 中,Wrap 是一种布局小部件,用于在水平或垂直方向上自动换行子小部件。它类似于 CSS 中的 flex-wrap,适合用于需要动态换行的布局场景,比如标签云、照片网格等。 Wrap 的基本属性 direction&…

springboot中使用mongodb完成评论功能

pom文件中引入 <!-- mongodb --> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-mongodb</artifactId> </dependency> yml中配置连接 data:mongodb:uri: mongodb://admin:1234561…

layui-vue第三方库表格列事件怎么写

插槽写入列点击事件 <div class"le-table-box" ref"TableBoxRef" :style"{ height: ShowPage ? calc(100% - 60px) : 100% }"><lay-table row-double"dbRowClick" :columns"TableColumn" :data-source"Table…

【docker】docker build上下文

什么是 Docker Build 上下文&#xff1f; 在 Docker 中&#xff0c;构建上下文&#xff08;Build Context&#xff09; 是指在执行 docker build 命令时&#xff0c;Docker 会发送给 Docker 引擎的所有文件和目录的集合。构建上下文包含了 Dockerfile 和用于构建镜像的所有文件…

[在线实验]-Redis Docker镜像的下载与部署

镜像下载 dockerredis镜像资源-CSDN文库 加载镜像 使用以下命令从redis.tar文件中加载Docker镜像 docker load --input redis.tar 创建映射目录 为了确保Redis的数据能够持久化&#xff0c;我们需要创建一个本地目录来存储这些数据 mkdir -p datasource/docker/redis 运…

Flink CDC 使用实践以及遇到的问题

背景 最近公司在做一些业务上的架构调整&#xff0c;有一部分是数据从mysql采集到Starrocks&#xff0c;之前的一套方法是走 debezium 到 puslar 到 starrocks,这一套下来比较需要配置很多东西&#xff0c;而且出现问题以后&#xff0c;需要修改很多配置&#xff0c;而且现阶段…

配置idea环境进行scala编程

这里用的jdk是jdk-8u161,scala版本是2.12.0 在d盘新建一个本地仓库用来存放下载的maven包&#xff0c;在里面创建如下两个文件 更改settings文件为下面的样子 点击左下角的设置&#xff0c;更改maven本地仓库的位置&#xff08;默认在c盘用户目录下的.m2文件中&#xff0c;更改…

0017. shell命令--tac

目录 17. shell命令--tac 功能说明 语法格式 选项说明 实践操作 注意事项 17. shell命令--tac 功能说明 Linux 的 tac 命令用于按行反向输出文件内容&#xff0c;与 cat 命令的输出顺序相反。非常有趣&#xff0c;好记。也就是说&#xff0c;当我们使用tac命令查看文件内…

mimic插件使用

最近搞机械臂的末端夹具&#xff0c;本来想用吸盘的插件的&#xff0c;不知道为什么吸盘吸不起来可乐瓶&#xff0c;后面就换成夹爪了。 因为原厂的urdf文件中提供夹爪是用mimic标签控制剩下的5个joint关节的&#xff0c;网上参考的资料太少了&#xff0c;也是废了好多力 气&am…

M31系列LoRa分布式IO模块功能简介

M31系列LoRa 分布式 IO 模块简介 M31系列LoRa分布式IO主机模块是一款强大的无线远程控制与采集设备&#xff0c;该设备采用 LoRa 无线技术&#xff08;内置了无线模块&#xff09;&#xff0c;可通过串口或远程 LoRa 组网设备发送 Modbus RTU 指令进行控制&#xff0c;可搭配E…