【Petri网导论学习笔记】Petri网导论入门学习(十一) —— 3.3 变迁发生序列与Petri网语言

目录

      • 3.3 变迁发生序列与Petri网语言
        • 定义 3.4
        • 定义 3.5
        • 定义 3.6
        • 定理 3.5
        • 例 3.9
        • 定义 3.7
        • 例 3.10
        • 定理 3.6
        • 定理 3.7 有界Petri网泵引理
        • 推论 3.5
        • 定义 3.9
        • 定理 3.8
        • 定义 3.10
        • 定义 3.11
        • 定义 3.12
        • 定理 3.9

3.3 变迁发生序列与Petri网语言

对于 Petri 网进行分析的另一种方法是考察网系统中所有可能发生的变迁序列以及这些序列所构成的集合的性质。如所周知,一个字母表满足某些特定条件的字符串集合,称为该字母表上的一个语言。如果我们把一个 Petri 网的变迁集 T T T 看作一个字母表(即把每个变迁看作一个字符),或者给出变迁集到某个字母表 Γ \Gamma Γ 上的一个映射的定义,那么该 Petri 网的所有可能发生的变迁序列(或这些序列映射到 Γ ∗ \Gamma^* Γ 的字符串)的集合就是 T T T(或 Γ \Gamma Γ)上的一个语言

变迁为字母表

在 Petri 网语言理论中,根据终止状态的不同取法,把 Petri 网语言(Petri net language) 分成 4 型。在每一型中,又根据变迁集 T T T 到字母表 Γ \Gamma Γ 的映射 φ \varphi φ 的不同规定,分成 3 类。一共给出了 4 型 12 类 Petri 网语言。

根据终止状态划分4型,映射划分3类,共4型12类

定义 3.4

Σ = ( S , T ; F , M 0 ) \Sigma = (S, T; F, M_0) Σ=(S,T;F,M0) 为一个 Petri 网, φ : T → Γ \varphi: T \rightarrow \Gamma φ:TΓ 为标注函数, Q t ⊆ R ( M 0 ) Q_t \subseteq R(M_0) QtR(M0)。令

L = { φ ( σ ) ∈ Γ ∗ ∣ σ ∈ T ∗ : M 0 [ σ ⟩ M , M ∈ Q t } L = \{\varphi(\sigma) \in \Gamma^* \mid \sigma \in T^*: M_0 [\sigma \rangle M, M \in Q_t\} L={φ(σ)ΓσT:M0[σM,MQt} (3.19)

L ′ = { φ ( σ ) ∈ Γ ∗ ∣ ( σ ∈ T ∗ : M 0 [ σ ⟩ M ) ∧ ( ∃ M ′ ∈ Q t : M ≥ M ′ ) } L' = \{\varphi(\sigma) \in \Gamma^* \mid (\sigma \in T^*: M_0 [\sigma \rangle M) \land (\exists M' \in Q_t: M \geq M')\} L={φ(σ)Γ(σT:M0[σM)(MQt:MM)} (3.20)

  1. Q t Q_t Qt 是预先给定的 R ( M 0 ) R(M_0) R(M0) 的一个子集,则称 L L L Σ \Sigma Σ 产生的 L L L-型语言 L ′ L' L 称为 Σ \Sigma Σ 产生的 G G G-型语言
  2. Q t = { M ∈ R ( M 0 ) ∣ ∀ t ∈ T : M [ t ⟩ } Q_t = \{M \in R(M_0) \mid \forall t \in T: M[t\rangle\} Qt={MR(M0)tT:M[t⟩},则称 L L L Σ \Sigma Σ 产生的 T T T-型语言
  3. Q t = R ( M 0 ) Q_t = R(M_0) Qt=R(M0),则称 L L L Σ \Sigma Σ 产生的 P P P-型语言
  1. L L L-型语言

    • 定义:终止状态 Q t Q_t Qt 是初始标记状态可达集 R ( M 0 ) R(M_0) R(M0) 的一个子集
    • 特点:只包含那些能精确到达 Q t Q_t Qt 中某个标记的变迁序列
  2. G G G-型语言

    • 定义:允许到达的标记 M M M 可以大于 Q t Q_t Qt 中的某个标记。
    • 特点:包含那些能到达或超过 Q t Q_t Qt 中某个标记的变迁序列。(能到就可以不要求精确到,能大于他的那个状态也行,能覆盖)
  3. P P P-型语言

    • 定义:终止状态 Q t Q_t Qt所有可达标记,即 R ( M 0 ) R(M_0) R(M0)
    • 特点:包含所有从初始标记 M 0 M_0 M0 出发可达的变迁序列。
  4. T T T-型语言

    • 定义:终止状态 Q t Q_t Qt 包含所有可以从 M 0 M_0 M0 出发的死标签。
    • 特点:包含那些死标签。

    区别总结

  • 终止条件 L L L 型要求精确到达 G G G允许覆盖 P P P包括所有可达状态 T T T 型是死标签集合。
  • 应用场景:不同类型语言适用于不同的系统建模需求。例如, L L L 型适合需要精确控制的系统,而 T T T 型适合需要持续运行的系统。
定义 3.5

Σ = ( S , T ; F , M 0 ) \Sigma = (S, T; F, M_0) Σ=(S,T;F,M0) 为一个 Petri 网, L L L Σ \Sigma Σ 产生的 L L L-型 ( G G G-型, T T T-型, P P P-型) 语言。对于标注函数 φ : T → Γ \varphi: T \rightarrow \Gamma φ:TΓ:

  1. Γ = T \Gamma = T Γ=T,且 ∀ t ∈ T : φ ( t ) = t \forall t \in T: \varphi(t) = t tT:φ(t)=t,则称 L L L Σ \Sigma Σ 产生的 L L L-型 ( G G G-型, T T T-型, P P P-型) 无标注语言,记为 L f ( G f , T f , P f ) L^{f}(G^f, T^f, P^f) Lf(Gf,Tf,Pf)

  2. ∀ t ∈ T , φ ( t ) ≠ λ ( λ  表示空串 ) \forall t \in T, \varphi(t) \neq \lambda (\lambda \text{ 表示空串}) tT,φ(t)=λ(λ 表示空串),则称 L L L Σ \Sigma Σ 产生的 L L L-型 ( G G G-型, T T T-型, P P P-型) 无空标注语言,记为 L ( G , T , P ) L(G, T, P) L(G,T,P);否则称 L L L Σ \Sigma Σ 产生的 L L L-型 ( G G G-型, T T T-型, P P P-型) 含空标注语言,记为 L λ ( G λ , T λ , P λ ) L^{\lambda}(G^{\lambda}, T^{\lambda}, P^{\lambda}) Lλ(Gλ,Tλ,Pλ)

如果映射后两者相等,则称无标注语言

不相等,如果不存在空串称为无空标注语言

有空串称为含空标注语言

定义 3.4 和定义 3.5 把 Petri 网语言分成 4 型 12 类,如表 3.1 所示。

image-20241123092708088

各种型(类)语言的背景是明显的。对于一个 Petri 网 Σ = ( S , T ; F , M 0 ) \Sigma = (S, T; F, M_0) Σ=(S,T;F,M0) L L L-型语言和 G G G-型语言分别为 Σ \Sigma Σ到达覆盖某些预先给定的标识的变迁发生序列(或它们到某字母表上的映象)的集合 T T T-型语言是指那些导致死标识的变迁序列(或它们到 Γ \Gamma Γ 的映象)的集合, P P P-型语言是 Σ \Sigma Σ一切可能发生的变迁序列(或它们到 Γ \Gamma Γ 的映象)的集合。可见,Petri 网语言的分“型”同形式语言中 Chomsky 文法体系的“型”没有任何联系。标注函数 φ \varphi φ 则是对各个变迁在被描述的实际系统中所对应的动作的一个注解。例如,当两个变迁在被描述的系统中对应同一个(种)动作时,可以对它们赋予相同的标注。当一个变迁在被描述系统中不代表任何实际动作(即是一种虚动作,虚工序)时,则可以对它赋予空标注 λ \lambda λ-标注)。

与乔姆斯基分类的型没有关系

标注函数只是变迁在实际系统对应动作的一个注解

空标注代表一个变迁在被描述的系统中不代表任何实际动作,虚动作,虚工序

在所定义的 12 类 Petri 网语言中, L λ L^\mathrm{\lambda} Lλ范围最广的一类。其他各类型的 Petri 网语言都可以转化为 L λ L^\mathrm{\lambda} Lλ的一个子类。[4] 对 L L L- 型语言作了详细的讨论,并指出每一个 L L L一型 Petri 网语言都可以由一个标准 Petri 网产生。

定义 3.6

Σ = ( S , T ; F , M 0 ) \Sigma=(S,T;F,M_{0}) Σ=(S,T;F,M0)为一个 Petri 网。如果
1)存在 s b , s f ∈ S s_b,s_f\in S sb,sfS,使得 ∙ s b = ∅ ^\bullet s_b=\emptyset

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/887572.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Flink--API 之Transformation-转换算子的使用解析

目录 一、常用转换算子详解 (一)map 算子 (二)flatMap 算子 (三)filter 算子 (四)keyBy 算子 元组类型 POJO (五)reduce 算子 二、合并与连接操作 …

Top 10 Tools to Level Up Your Prompt Engineering Skills

此文章文字是转载翻译,图片是自已用AI 重新生成的。文字内容来自 https://www.aifire.co/p/top-10-ai-prompt-engineering-tools 供记录学习使用。 Introduction to AI Prompt Engineering AI Prompt Engineering 简介 1,Prompt Engineering 提示工程…

Rust语言俄罗斯方块(漂亮的界面案例+详细的代码解说+完美运行)

tetris-demo A Tetris example written in Rust using Piston in under 500 lines of code 项目地址: https://gitcode.com/gh_mirrors/te/tetris-demo 项目介绍 "Tetris Example in Rust, v2" 是一个用Rust语言编写的俄罗斯方块游戏示例。这个项目不仅是一个简单…

Spring Boot 与 Spring Cloud Alibaba 版本兼容对照

版本选择要点 Spring Boot 3.x 与 Spring Cloud Alibaba 2022.0.x Spring Boot 3.x 基于 Jakarta EE,javax.* 更换为 jakarta.*。 需要使用 Spring Cloud 2022.0.x 和 Spring Cloud Alibaba 2022.0.x。 Alibaba 2022.0.x 对 Spring Boot 3.x 的支持在其发行说明中…

(免费送源码)计算机毕业设计原创定制:Java+ssm+JSP+Ajax SSM棕榈校园论坛的开发

摘要 随着计算机科学技术的高速发展,计算机成了人们日常生活的必需品,从而也带动了一系列与此相关产业,是人们的生活发生了翻天覆地的变化,而网络化的出现也在改变着人们传统的生活方式,包括工作,学习,社交…

Ubuntu Opencv 源码包安装

说明: ubuntu20.04 建议 使用 opencv-4.6.0版本 ubuntu18.04 建议 使用 opencv-4.5.2-版本 安装包准备 1、下载源码包 OpenCV官网 下载相关版本源码 Sources # 克隆方式 OpenCV 源码git clone https://github.com/opencv/opencv.gitcd opencvgit checkout 4.5.2 …

Linux 下自动化之路:达梦数据库定期备份并推送至 GitLab 全攻略

目录 环境准备 生成SSH 密钥对 数据库备份并推送到gitlab脚本 设置定时任务 环境准备 服务器要有安装达梦数据库(达梦安装这里就不示例了),git 安装Git 1、首先,确保包列表是最新的,运行以下命令: …

<项目代码>YOLOv8 停车场空位识别<目标检测>

YOLOv8是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv8具有更高的…

Spring Boot 集成 Knife4j 的 Swagger 文档

在开发微服务应用时,API 文档的生成和维护是非常重要的一环。Swagger 是一个非常流行的 API 文档工具,可以帮助我们自动生成 RESTful API 的文档,并提供了一个友好的界面供开发者测试 API。本文将介绍如何在 Spring Boot 项目中集成 Knife4j …

微信小程序中会议列表页面的前后端实现

题外话:想通过集成腾讯IM来解决即时聊天的问题,如果含语音视频,腾讯组件一年5万起步,贵了!后面我们改为自己实现这个功能,这里只是个总结而已。 图文会诊需求 首先是个图文列表界面 同个界面可以查看具体…

git(Linux)

1.git 三板斧 基本准备工作: 把远端仓库拉拉取到本地了 .git --> 本地仓库 git在提交的时候,只会提交变化的部分 就可以在当前目录下新增代码了 test.c 并没有被仓库管理起来 怎么添加? 1.1 git add test.c 也不算完全添加到仓库里面&…

【动手学电机驱动】STM32-FOC(8)MCSDK Profiler 电机参数辨识

STM32-FOC(1)STM32 电机控制的软件开发环境 STM32-FOC(2)STM32 导入和创建项目 STM32-FOC(3)STM32 三路互补 PWM 输出 STM32-FOC(4)IHM03 电机控制套件介绍 STM32-FOC(5&…

5G NR:带宽与采样率的计算

100M 带宽是122.88Mhz sampling rate这是我们都知道的,那它是怎么来的呢? 采样率 子载波间隔 * 采样长度 38.211中对于Tc的定义, 在LTE是定义了Ts,在NR也就是5G定义了Tc。 定义这个单位会对我们以后工作中的计算至关重要。 就是在…

【湿度数据处理】中国地面气候资料日值数据集(V3.0)(MATLAB全代码)

【湿度数据处理】中国地面气候资料日值数据集 处理1:数据范围筛选处理2:缺测数据筛查处理3:缺测数据插补参考基于此博客完成各要素数据提取后-【数据集处理】中国地面气候资料日值数据集(V3.0)(含MATLAB全代码),进行后续数据筛选及缺测处理,此处以湿度数据为例。 提取到的…

MySQL面试-1

InnoDB中ACID的实现 先说一下原子性是怎么实现的。 事务要么失败,要么成功,不能做一半。聪明的InnoDB,在干活儿之前,先将要做的事情记录到一个叫undo log的日志文件中,如果失败了或者主动rollback,就可以通…

大数据-231 离线数仓 - DWS 层、ADS 层的创建 Hive 执行脚本

点一下关注吧!!!非常感谢!!持续更新!!! Java篇开始了! 目前开始更新 MyBatis,一起深入浅出! 目前已经更新到了: Hadoop&#xff0…

leetcode_有序数组中的单一元素

540. 有序数组中的单一元素 - 力扣&#xff08;LeetCode&#xff09; 二分查找 使用条件 &#xff1a; 有序 &#xff0c; log n class Solution { public:int singleNonDuplicate(vector<int>& nums) {int left 0, right nums.size() - 1, mid;while (left <…

Python中的简单爬虫

文章目录 一. 基于FastAPI之Web站点开发1. 基于FastAPI搭建Web服务器2. Web服务器和浏览器的通讯流程3. 浏览器访问Web服务器的通讯流程4. 加载图片资源代码 二. 基于Web请求的FastAPI通用配置1. 目前Web服务器存在问题2. 基于Web请求的FastAPI通用配置 三. Python爬虫介绍1. 什…

USRP:B205mini-i

USRP B205mini-i B205mini-i都是采用工业级的FPGA芯片(-I表示industrial-grade)&#xff0c;所以价格贵。 这个工业级会让工作温度从原来 0 – 45 C 变为 -40 – 75 C. 温度的扩宽&#xff0c;会让工作的稳定性变好。但是前提是你需要配合NI的外壳才行&#xff0c;你如果只买一…

基于Redis内核的热key统计实现方案|得物技术

一、Redis热key介绍 Redis热key问题是指单位时间内&#xff0c;某个特定key的访问量特别高&#xff0c;占用大量的CPU资源&#xff0c;影响其他请求并导致整体性能降低。而且&#xff0c;如果访问热key的命令是时间复杂度较高的命令&#xff0c;会使得CPU消耗变得更加严重&…