Spring AI Alibaba-Chat Client

一、ChatClient 简介

ChatClient 提供了与 AI 模型通信的 Fluent API,它支持同步和反应式(Reactive)编程模型。与 ChatModelMessageChatMemory 等原子 API 相比,使用 ChatClient 可以将与 LLM 及其他组件交互的复杂性隐藏在背后,因为基于 LLM 的应用程序通常要多个组件协同工作(例如,提示词模板、聊天记忆、LLM Model、输出解析器、RAG 组件:嵌入模型和存储),并且通常涉及多个交互,因此协调它们会让编码变得繁琐。当然使用 ChatModel 等原子 API 可以为应用程序带来更多的灵活性,成本就是您需要编写大量样板代码。

ChatClient 类似于应用程序开发中的服务层,它为应用程序直接提供 AI 服务,开发者可以使用 ChatClient Fluent API 快速完成一整套 AI 交互流程的组装。

包括一些基础功能,如:

  • 定制和组装模型的输入(Prompt)
  • 格式化解析模型的输出(Structured Output)
  • 调整模型交互参数(ChatOptions)

还支持更多高级功能:

  • 聊天记忆(Chat Memory)
  • 工具/函数调用(Function Calling)
  • RAG

二、创建 ChatClient

使用 ChatClient.Builder 对象创建 ChatClient 实例,您可以自动注入由Spring Boot 自动配置创建的默认 ChatClient.Builder 实例,您也可以通过编程方式自行创建一个 ChatClient.Builder 实例并用它来得到 ChatClient 实例。

1、使用自动配置的 ChatClient.Builder

在快速开始示例中,就是使用的 Spring Boot 自动装配默认生成的 ChatClient.Builder 的 bean,把它注入到您自己的类中。这里是根据用户提问并从模型得到文本回答的简单例子:

@RestControllerpublic class ChatController {private final ChatClient chatClient;public ChatController(ChatClient.Builder builder) {this.chatClient = builder.build();}@GetMapping("/chat")public String chat(String input) {return this.chatClient.prompt().user(input).call().content();}}

在这个示例中,首先设置了用户消息的内容,call 方法向 AI 模型发送请求,content 方法以字符串形式返回 AI 模型的响应。

2、以编程方式创建 ChatClient

您可以通过设置属性 spring.ai.chat.client.enabled=false 来禁用 ChatClient.Builder bean 的自动配置,如果需要多个聊天模型一起使用,这会很有用,然后以编程方式创建 ChatClient.Builder,这样可以为每个聊天模型创建一个实例 ChatModel

ChatModel myChatModel = ... // usually autowiredChatClient.Builder builder = ChatClient.builder(myChatModel);// or create a ChatClient with the default builder settings:ChatClient chatClient = ChatClient.create(myChatModel);

三、处理 ChatClient 响应

ChatClient API 提供了多种方法格式化来自 AI 模型的响应。

1、返回 ChatResponse

  ​AI 模型的响应是一种由 ChatResponse类型定义的丰富结构。响应类型中包含模型生成的相关元数据信息,同时它还可以包含多个子响应(称为 Generation),每个子响应都有自己的元数据。元数据包括用于创建响应的令牌(token)数量信息(在英文中,每个令牌大约为一个单词的 3/4),了解令牌信息很重要,因为 AI 模型根据每个请求使用的令牌数量收费。 ​

下面的代码段显示了通过调用 chatResponse() 返回 ChatResponse 的示例,相比于调用 content() 方法,这里在调用 call() 方法之后调用 chatResponse()

ChatResponse chatResponse = chatClient.prompt().user("Tell me a joke").call().chatResponse();

2、返回实体类(Entity)

如果您希望应用接口返回一个预先定义好的实体类型(即完成实体 Bean 的映射),Spring AI Alibaba 框架也提供了将模型响应映射到 Java Bean 的转换,您可以在模型的 call() 方法之后调用entity() 实现。

例如,给定 Java record(POJO)定义:

record ActorFilms(String actor, List<String> movies) {}

您可以使用该 entity 方法轻松地将 AI 模型的输出映射到 ActorFilms 类型,如下所示:

ActorFilms actorFilms = chatClient.prompt().user("Generate the filmography for a random actor.").call().entity(ActorFilms.class);

entity 还有一种带有参数的重载方法 entity(ParameterizedTypeReference<T> type),可让您指定如泛型 List 等类型:

List<ActorFilms> actorFilms = chatClient.prompt().user("Generate the filmography of 5 movies for Tom Hanks and Bill Murray.").call().entity(new ParameterizedTypeReference<List<ActorFilms>>() {});

3、流式响应

stream 方法是一种异步的、持续获得模型响应的方式:

Flux<String> output = chatClient.prompt().user("Tell me a joke").stream().content();

相比于上面的 Flux<String>,您还可以使用 Flux<ChatResponse> chatResponse() 方法获得 ChatResponse 响应数据流。

四、call() 返回值

ChatClient.call() 方法支持几种不同类型的响应格式。

  • String content():返回响应的字符串内容
  • ChatResponse chatResponse():返回ChatResponse包含多个 Generation 以及有关响应的元数据的对象。例如,使用了多少个令牌来创建响应。
  • entity 返回 Java 类型
    • entity(ParameterizedTypeReference type):用于返回实体类型的集合。
    • entity(Class type): 用于返回特定的实体类型。
    • entity(StructuredOutputConverter structuredOutputConverter): 用于指定一个实例 StructuredOutputConverter,将 String 转换为实体类型。

五、stream() 返回值

您还可以调用 stream() 方法来获得模型的响应,而不是只使用 call() 方法,strem() 方法的响应类型有以下几种选项:

  • Flux<String> content():返回由 AI 模型生成的 Flux<String> 对象。
  • Flux<ChatResponse> chatResponse():返回 Flux<ChatResponse> 对象,其中包含模型相应的元数据和其他信息。

六、自定义 ChatClient 默认值

在前面 ChatClient 的初步体验中,我们使用 ChatClient.Builder.build() 快速创建了一个 ChatClient 实例,开发者还可以使用 ChatClient.Builder 来自定义 ChatClient 实例的相关属性

注意:创建 ChatClient 时指定的配置将作为与模型交互时的默认参数,这样可以避免每次调用都重复设置

1、设置默认 System Message

在以下示例中,我们为 ChatClient 设置了一个默认的 system message(以海盗风格回答所有问题)。当 ChatClient 与模型交互时都会自动携带这条 system message,用户只需要指定 user message 即可。

@Configurationclass Config {@BeanChatClient chatClient(ChatClient.Builder builder) {return builder.defaultSystem("You are a friendly chat bot that answers question in the voice of a Pirate").build();}}

在 Controller 中使用自定义的 ChatClient 实例:

@RestControllerclass AIController {private final ChatClient chatClient;AIController(ChatClient chatClient) {this.chatClient = chatClient;}@GetMapping("/ai/simple")public Map<String, String> completion(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {return Map.of("completion", chatClient.prompt().user(message).call().content());}}

启动示例,通过 curl 测试效果:

> curl localhost:8080/ai/simple{"generation":"Why did the pirate go to the comedy club? To hear some arrr-rated jokes! Arrr, matey!"}

在上面 builder.defaultSystem() 创建 ChatClient 时。我们还可以选择使用 Prompt 模板,类似 “You are a friendly chat bot that answers question in the voice of a {voice}“,这让我们有机会在每次调用前修改请求参数。

@Configurationclass Config {@BeanChatClient chatClient(ChatClient.Builder builder) {return builder.defaultSystem("You are a friendly chat bot that answers question in the voice of a {voice}").build();}}@RestControllerclass AIController {private final ChatClient chatClientAIController(ChatClient chatClient) {this.chatClient = chatClient;}@GetMapping("/ai")Map<String, String> completion(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message, String voice) {return Map.of("completion",chatClient.prompt().system(sp -> sp.param("voice", voice)).user(message).call().content());}}

答案是:

 

http localhost:8080/ai voice=='Robert DeNiro'{"completion": "You talkin' to me? Okay, here's a joke for ya: Why couldn't the bicycle stand up by itself? Because it was two tired! Classic, right?"}

2、其他默认设置

除了 defaultSystem 之外,您还可以在 ChatClient.Builder 中指定其他默认提示词。

  • defaultOptions(ChatOptions chatOptions):传入 ChatOptions 类中定义的可移植选项或特定于模型实现的如 DashScopeChatOptions 选项。有关特定于模型的ChatOptions实现的更多信息,请参阅 JavaDocs。

  • defaultFunction(String name, String description, java.util.function.Function<I, O> function)name 用于在用户文本中引用该函数,description解释该函数的用途并帮助 AI 模型选择正确的函数以获得准确的响应,参数 function 是模型将在必要时执行的 Java 函数实例。

  • defaultFunctions(String... functionNames):应用程序上下文中定义的 java.util.Function 的 bean 名称。

  • defaultUser(String text)defaultUser(Resource text)defaultUser(Consumer<UserSpec> userSpecConsumer) 这些方法允许您定义用户消息输入,Consumer<UserSpec>允许您使用 lambda 指定用户消息输入和任何默认参数。

  • defaultAdvisors(RequestResponseAdvisor... advisor):Advisors 允许修改用于创建 Prompt 的数据,QuestionAnswerAdvisor 实现通过在 Prompt 中附加与用户文本相关的上下文信息来实现 Retrieval Augmented Generation 模式。

  • defaultAdvisors(Consumer<AdvisorSpec> advisorSpecConsumer):此方法允许您定义一个 Consumer 并使用 AdvisorSpec 配置多个 Advisor,Advisor 可以修改用于创建 Prompt 的最终数据,Consumer<AdvisorSpec> 允许您指定 lambda 来添加 Advisor 例如 QuestionAnswerAdvisor

您可以在运行时使用 ChatClient 提供的不带 default 前缀的相应方法覆盖这些默认值。

  • options(ChatOptions chatOptions)

  • function(String name, String description, java.util.function.Function<I, O> function)

  • functions(String... functionNames)

  • user(String text)user(Resource text)user(Consumer<UserSpec> userSpecConsumer)

  • advisors(RequestResponseAdvisor... advisor)

  • advisors(Consumer<AdvisorSpec> advisorSpecConsumer)

七、Advisors

在使用用户输入文本构建 Prompt 调用 AI 模型时。一个常见模式是使用上下文数据附加或扩充 Prompt,最终使用扩充后的 Prompt 与模型交互。

这些用于扩充 Prompt 的上下文数据可以是不同类型的,常见类型包括:

  • 您自己的数据:这是 AI 模型尚未训练过的数据,如特定领域知识、产品文档等,即使模型已经看到过类似的数据,附加的上下文数据也会优先生成响应。
  • 对话历史记录:聊天模型的 API 是无状态的,如果您告诉 AI 模型您的姓名,它不会在后续交互中记住它,每次请求都必须发送对话历史记录,以确保在生成响应时考虑到先前的交互。

1、检索增强生成(RAG)

向量数据库存储的是 AI 模型不知道的数据,当用户问题被发送到 AI 模型时,QuestionAnswerAdvisor 会在向量数据库中查询与用户问题相关的文档。

来自向量数据库的响应被附加到用户消息 Prompt 中,为 AI 模型生成响应提供上下文。

假设您已将数据加载到中 VectorStore,则可以通过向 ChatClient 提供 QuestionAnswerAdvisor 实例来执行检索增强生成 (RAG ) 。

ChatResponse response = ChatClient.builder(chatModel).build().prompt().advisors(new QuestionAnswerAdvisor(vectorStore, SearchRequest.defaults())).user(userText).call().chatResponse();

在此示例中,SearchRequest.defaults() 将对 Vector 向量数据库中的所有文档执行相似性搜索。为了限制要搜索的文档类型,SearchRequest 采用了可移植到任意向量数据库中的类似 SQL 筛选表达式。

动态过滤表达式

SearchRequest 使用 FILTER_EXPRESSION Advisor 上下文参数在运行时更新过滤表达式:

ChatClient chatClient = ChatClient.builder(chatModel).defaultAdvisors(new QuestionAnswerAdvisor(vectorStore, SearchRequest.defaults())).build();// Update filter expression at runtimeString content = chatClient.prompt().user("Please answer my question XYZ").advisors(a -> a.param(QuestionAnswerAdvisor.FILTER_EXPRESSION, "type == 'Spring'")).call().content();

该 FILTER_EXPRESSION 参数允许您根据提供的表达式动态过滤搜索结果。

2、聊天记忆

ChatMemory 接口表示聊天对话历史记录的存储,它提供向对话添加消息、从对话中检索消息以及清除对话历史记录的方法。

目前提供两种实现方式 InMemoryChatMemoryCassandraChatMemory,分别为聊天对话历史记录提供内存存储和 time-to-live 类型的持久存储。

创建一个包含 time-to-live 配置的 CassandraChatMemory

CassandraChatMemory.create(CassandraChatMemoryConfig.builder().withTimeToLive(Duration.ofDays(1)).build());

以下 Advisor 实现使用 ChatMemory 接口来使用对话历史记录来增强(advice)Prompt,这些 advisor 实现在如何将对话历史记录添加到 Prompt 的细节上有所不同。

  • MessageChatMemoryAdvisor:内存被检索并作为消息集合添加到提示中
  • PromptChatMemoryAdvisor:检索内存并将其添加到提示的系统文本中。
  • VectorStoreChatMemoryAdvisor :构造函数VectorStoreChatMemoryAdvisor(VectorStore vectorStore, String defaultConversationId, int chatHistoryWindowSize)允许您指定要从中检索聊天历史记录的 VectorStore、唯一的对话 ID、要检索的聊天历史记录的大小(以令牌大小为单位)。

下面的 @Service 提供了一个使用多个 Advisor 的示例实现:

import static org.springframework.ai.chat.client.advisor.AbstractChatMemoryAdvisor.CHAT_MEMORY_CONVERSATION_ID_KEY;import static org.springframework.ai.chat.client.advisor.AbstractChatMemoryAdvisor.CHAT_MEMORY_RETRIEVE_SIZE_KEY;@Servicepublic class CustomerSupportAssistant {private final ChatClient chatClient;public CustomerSupportAssistant(ChatClient.Builder builder, VectorStore vectorStore, ChatMemory chatMemory) {this.chatClient = builder.defaultSystem("""You are a customer chat support agent of an airline named "Funnair".", Respond in a friendly,helpful, and joyful manner.Before providing information about a booking or cancelling a booking, you MUST alwaysget the following information from the user: booking number, customer first name and last name.Before changing a booking you MUST ensure it is permitted by the terms.If there is a charge for the change, you MUST ask the user to consent before proceeding.""").defaultAdvisors(new PromptChatMemoryAdvisor(chatMemory),// new MessageChatMemoryAdvisor(chatMemory), // CHAT MEMORYnew QuestionAnswerAdvisor(vectorStore, SearchRequest.defaults()),new LoggingAdvisor()) // RAG.defaultFunctions("getBookingDetails", "changeBooking", "cancelBooking") // FUNCTION CALLING.build();}public Flux<String> chat(String chatId, String userMessageContent) {return this.chatClient.prompt().user(userMessageContent).advisors(a -> a.param(CHAT_MEMORY_CONVERSATION_ID_KEY, chatId).param(CHAT_MEMORY_RETRIEVE_SIZE_KEY, 100)).stream().content();}}

3、日志记录

SimpleLoggerAdvisor 是一个用于记录 ChatClient 的 request 和 response 数据 Advisor,这对于调试和监控您的 AI 交互非常有用。

要启用日志记录,请在创建 ChatClient 时将 SimpleLoggerAdvisor 添加到 Advisor 链中。建议将其添加到链的末尾:

ChatResponse response = ChatClient.create(chatModel).prompt().advisors(new SimpleLoggerAdvisor()).user("Tell me a joke?").call().chatResponse();

要查看日志,请将 Advisor 包的日志记录级别设置为 DEBUG

org.springframework.ai.chat.client.advisor=DEBUG

将其添加到您的 application.properties 或 application.yaml 文件中。

您可以使用以下构造函数自定义如何使用 SimpleLoggerAdvisor 记录来自 AdvisedRequest 和 ChatResponse 的数据:

SimpleLoggerAdvisor(Function<AdvisedRequest, String> requestToString,Function<ChatResponse, String> responseToString)

使用示例:

javaCopySimpleLoggerAdvisor customLogger = new SimpleLoggerAdvisor(request -> "Custom request: " + request.userText,response -> "Custom response: " + response.getResult());

这使得您可以根据您的特定需求定制需要记录的信息。

原文出自:Spring AI Alibaba

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/887205.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

7-2 扑克牌花色

作者 李祥 单位 湖北经济学院 给 52 张扑克牌面编号如下&#xff1a; 编号牌面编号牌面编号牌面编号牌面0♠A13♥A26♣A39♦A1♠214♥227♣240♦22♠315♥328♣341♦33♠416♥429♣442♦44♠517♥530♣543♦55♠618♥631♣644♦66♠719♥732♣745♦77♠820♥833♣846♦88♠9…

windows 中docker desktop 安装

前提条件&#xff1a; 安装wsl2 1. 下载 Docker Desktop 访问 Docker Desktop 官方下载页面。 https://www.docker.com/products/docker-desktop/ 根据你的操作系统架构&#xff08;一般为 Windows x86_64&#xff09;下载安装程序。 选择标准&#xff1a; AMD64 是行业…

初学 flutter 环境变量配置

一、jdk&#xff08;jdk11&#xff09; 1&#xff09;配置环境变量 新增&#xff1a;JAVA_HOMEC:\Program Files\Java\jdk-11 //你的jdk目录 在path新增&#xff1a;%JAVA_HOME%\bin2&#xff09;验证是否配置成功&#xff08;cmd运行命令&#xff09; java java -version …

Linux——进程间通信之管道

进程间通信之管道 文章目录 进程间通信之管道1. 进程间通信1.1 为什么要进行进程间的通信1.2 如何进行进程间的通信1.3 进程间通信的方式 2. 管道2.1 匿名管道2.1.1 系统调用pipe()2.1.2 使用匿名管道进行通信2.1.1 匿名管道四种情况2.1.2 匿名管道的五大特性2.1.3 进程池 2.2 …

Sigrity SPEED2000 DDR simulation模式如何生成和解读DDR仿真报告-SODIMM-Write模式

Sigrity SPEED2000 DDR simulation模式如何生成和解读DDR仿真报告-SODIMM-Write模式 Sigrity SPEED2000 DDR simulation模式如何进行DDR仿真分析操作指导-SODIMM-Write模式详细介绍了如何进行DDR Write模式的仿真分析,下面基于此仿真结果进行DDR报告的输出和解读分析 在workfl…

【机器学习chp7】SVM

参考1&#xff0c;笔记 SVM笔记.pdf 参考2&#xff1a;王木头视频 什么是SVM&#xff0c;如何理解软间隔&#xff1f;什么是合叶损失函数、铰链损失函数&#xff1f;SVM与感知机横向对比&#xff0c;挖掘机器学习本质_哔哩哔哩_bilibili 目录 一、SVM模型 二、构建决策函…

使用Electron将vue2项目打包为桌面exe安装包

目录 一、下载electron模板项目 【electron-quick-start】​ 二、打开项目&#xff0c;安装所有依赖 三、在打exe包的时候报错是因为没有&#xff0c;需要检查并安装之后重新打包&#xff1b; 四、经过这么疯狂的一波操作之后&#xff0c;就可以打包出你想要的exe安装包&am…

摄像机常见的问题及解决方法

文章目录 1)红外网络枪形摄像机白天出现模糊&#xff0c;晚上出现星芒灯2、摄像机夜晚效果调整3、网络摄像机帧率和码流调整4、码流对图像质量的影响 如果你在安装的过程中,出现了以下的问题,请对照下列描述解决你的问题&#xff1a; 1)红外网络枪形摄像机白天出现模糊&#xf…

决策树分类算法【sklearn/决策树分裂指标/鸢尾花分类实战】

决策树分类算法 1. 什么是决策树&#xff1f;2. DecisionTreeClassifier的使用&#xff08;sklearn&#xff09;2.1 算例介绍2.2 构建决策树并实现可视化 3. 决策树分裂指标3.1 信息熵&#xff08;ID3&#xff09;3.2 信息增益3.3 基尼指数&#xff08;CART&#xff09; 4. 代码…

001 数字逻辑概论

1.1 数字信号与数字电路 目标1&#xff1a;what is 数字信号与数字电路 1.1.1.数字技术的发展及其应用 &#xff08;1&#xff09;发展&#xff1a; 发展过程特点: 以电子器件的发展为基础&#xff0c;如下图 电子管时代&#xff1a; 电子管&#xff1b;电子管体积大、重量…

Rust中Tracing 应用指南

欢迎来到这篇全面的Rust跟踪入门指南。Rust 的tracing是一个用于应用程序级别的诊断和调试的库。它提供了一种结构化的、异步感知的方式来记录日志和跟踪事件。与传统的日志记录相比&#xff0c;tracing能够更好地处理复杂的异步系统和分布式系统中的事件跟踪&#xff0c;帮助开…

C语言——break、continue、goto

目录 一、break 二、continue 1、在while循环中 2、在for循环中 三、go to 一、break 作用是终止循环&#xff0c;在循环内遇到break直接就跳出循环。 注&#xff1a; 一个break语句只能跳出一层循环。 代码演示&#xff1a; #include<stdio.h>void test01() {for (…

SSM全家桶 1.Maven

或许总要彻彻底底地绝望一次 才能重新再活一次 —— 24.11.20 maven在如今的idea中已经实现自动配置&#xff0c;不需要我们手动下载 一、Maven的简介和快速入门 Maven 是一款为 Java 项目构建管理、依赖管理的工具(软件)&#xff0c;使用 Maven 可以自动化构建测试、打包和发…

Oracle SQL*Plus中的SET VERIFY

在 Oracle SQL*Plus 中&#xff0c;SET VERIFY ON 和 SET VERIFY OFF 是两个用于控制命令执行前后显示变量值的命令。这些命令主要用于调试和验证 SQL 脚本中的变量替换情况。 一、参数说明 1.1 SET VERIFY ON 作用&#xff1a;启用变量替换的验证功能。当启用时&#xff0c;S…

双因子认证:统一运维平台安全管理策略

01双因子认证概述 双因子认证&#xff08;Two-Factor Authentication&#xff0c;简称2FA&#xff09;是一种身份验证机制&#xff0c;它要求用户提供两种不同类型的证据来证明自己的身份。这通常包括用户所知道的&#xff08;如密码&#xff09;、用户所拥有的&#xff08;如…

【Unity ShaderGraph实现流体效果之Function入门】

Unity ShaderGraph实现流体效果之Node入门&#xff08;一&#xff09; 前言Shader Graph NodePosition NodeSplit NodeSubtract NodeBranch Node 总结 前言 Unity 提供的Shader Graph在很大程度上简化了开发者对于编写Shader的工作&#xff0c;只需要拖拽即可完成一个视觉效果…

力扣—15.三数之和

15. 三数之和 给你一个整数数组 nums &#xff0c;判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k &#xff0c;同时还满足 nums[i] nums[j] nums[k] 0 。请你返回所有和为 0 且不重复的三元组。 注意&#xff1a;答案中不可以包含重复的三元…

Java项目实战II基于SpringBoot前后端分离的网吧管理系统(开发文档+数据库+源码)

目录 一、前言 二、技术介绍 三、系统实现 四、核心代码 五、源码获取 全栈码农以及毕业设计实战开发&#xff0c;CSDN平台Java领域新星创作者&#xff0c;专注于大学生项目实战开发、讲解和毕业答疑辅导。获取源码联系方式请查看文末 一、前言 随着互联网技术的不断发展…

【设计模式系列】责任链模式(十六)

一、什么是责任链模式 责任链模式&#xff08;Chain of Responsibility Pattern&#xff09;是一种行为型设计模式。其核心思想是将请求的发送者和接收者解耦&#xff0c;通过一个中介链来传递请求&#xff0c;使得多个对象都有可能接收请求&#xff0c;从而避免请求发送者和接…

算法学习笔记(十):位运算、数论等

一.位运算基础 集合与集合之间的位运算 集合和元素 常用函数 1.使两个整数相等的位更改次数 给你两个正帧数 n 和 k&#xff0c;你可以选择 n 的二进制表示 中任意一个值为 1 的位&#xff0c; 并将其改为0&#xff0c;返回使得 n 等于 k 所需要的更改次数&#xff0c;如无法实…