【动手学深度学习Pytorch】1. 线性回归代码

零实现

        导入所需要的包:

# %matplotlib inline
import random
import torch
from d2l import torch as d2l
import matplotlib.pyplot as plt
import matplotlib
import os

        构造人造数据集:假设w=[2, -3.4],b=4.2,存在随机噪音(均值为0,方差为0.001的正态分布噪声),函数拟合为y = w^{T}X + b + n。在构造数据集的过程中,首先X为正态分布(均值为0,方差为1,样本数/行数为num_examples,列数为len(w))

torch.normal(mean, std, *, generator=None, out=None):生成指定输出尺寸的正态分布随机数张量

torch.mv():矩阵和向量的乘积,此处X为矩阵,w为向量

def synthetic_data(w, b, num_examples):X = torch.normal(0, 1, (num_examples, len(w))) #均值为0方差为1的随机数,样本数,列数y = torch.mv(X, w) + b #y关于x的公式y += torch.normal(0, 0.001, y.shape) # 加入噪声项return X, y.reshape((-1,1)) #做成列向量返回
true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)

        查看数据集样本分布:

matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, *, edgecolors=None, plotnonfinite=False, data=None, **kwargs):

        x,y:长度相同的数组,也就是我们即将绘制散点图的数据点,输入数据。

        s:点的大小,默认 20,也可以是个数组,数组每个参数为对应点的大小。

        c:点的颜色,默认蓝色 'b',也可以是个 RGB 或 RGBA 二维行数组。

        marker:点的样式,默认小圆圈 'o'。

        cmap:Colormap,默认 None,标量或者是一个 colormap 的名字,只有 c 是一个浮点数数组的时才使用。如果没有申明就是 image.cmap。

        norm:Normalize,默认 None,数据亮度在 0-1 之间,只有 c 是一个浮点数的数组的时才使用。

        vmin,vmax:亮度设置,在 norm 参数存在时会忽略。

        alpha:透明度设置,0-1 之间,默认 None,即不透明。

        linewidths:标记点的长度。

        edgecolors:颜色或颜色序列,默认为 'face',可选值有 'face', 'none', None。

        plotnonfinite:布尔值,设置是否使用非限定的 c ( inf, -inf 或 nan) 绘制点。

        **kwargs:其他参数。

detach():允许我们从计算图中分离出张量。当对一个张量调用detach()方法时,它会创建一个新的张量,这个新张量与原始张量共享数据,但它不再参与计算图的任何操作,对分离后的张量进行的任何操作都不会影响原始张量,也不会在计算图中留下任何痕迹。

plt.scatter(features[:,(1)].detach().numpy(),labels.detach().numpy(),1);
plt.show()

        遍历数据集,输出数据集内容:

len(): 返回对象(字符、列表、元组等)长度或项目个数(此处是张量的行数)

list(): 将元组转换为列表

range():创建一个整数列表

shuffle(): 随机打乱列表

def data_iter(batch_size, features, labels):num_examples = len(features)indices = list(range(num_examples)) #生成样本索引random.shuffle(indices) #样本随机读取没有特定顺序# 进行batch划分for i in range(0, num_examples, batch_size): #从i开始到i+batchsizebatch_indices =  torch.tensor(indices[i:min(i + batch_size, num_examples)])# 截取切片:开始位置为i,结束位置为min函数的返回值# 返回值为i+batch_size和num_examples的值比较小的那个yield features[batch_indices], labels[batch_indices] #产生随机顺序的特征&标号batch_size = 10for X, y in data_iter(batch_size, features, labels):print(X, '\n', y)break

 

      定义参数、模型、损失函数以及优化算法:

torch.mutual():矩阵相乘

with torch.no_grad():所有计算得出的tensor的requires_grad都自动设置为False,不会进行自动求导

grad.zero_():将梯度置零(不然会发生累计的情况)

# 定义初始化模型参数
w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
# 定义模型
def linreg(X, w, b):return torch.matmul(X, w) + b
# 定义损失函数
def squared_loss(y_hat, y):return (y_hat - y.reshape(y_hat.shape))**2/2
# 定义优化算法
def sgd(params, lr, batch_size):with torch.no_grad():for param in params:param -= lr * param.grad / batch_sizeparam.grad.zero_()

        定义训练过程:

# 训练过程
lr = 0.01
num_epochs = 10
net = linreg
loss = squared_lossfor epoch in range(num_epochs):for X, y in data_iter(batch_size, features, labels):l = loss(net(X, w, b), y)l.sum().backward()sgd([w,b], lr, batch_size)with torch.no_grad():train_1= loss(net(features, w, b), labels)print(f'epoch{epoch + 1}, loss{float(train_1.mean()):f}')

简介实现

        导入所需要的包:

import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l
import matplotlib.pyplot as plt

        创建人造数据集:

data.TensorDataset():将数据进行封装

data.DataLoader():将数据分批次处理

iter():获取列表的迭代器

next():获取下一个值

true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b,1000)
def load_array(data_arrays, batch_size, is_train=True):dataset = data.TensorDataset(*data_arrays)return data.DataLoader(dataset, batch_size, shuffle=is_train)batch_size = 10
data_iter = load_array((features, labels), batch_size)next(iter(data_iter))

初始化模型、模型参数、loss: 

nn.Sequential():实现模型层结构的简单排序

torch.optim.SGD():定义优化算法

torch.optim.SGD().step():进行模型的更新

# 使用框架的预定义好的层
from torch import nn
net = nn.Sequential(nn.Linear(2,1))
# 初始化模型参数
net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)
# 计算均方误差使用的是MSELoss类
loss = nn.MSELoss()
trainer = torch.optim.SGD(net.parameters(),lr=0.01)

        定义训练过程:

num_epochs = 3
for epoch in range(num_epochs):for X, y in data_iter:l = loss(net(X), y)trainer.zero_grad()l.backward()trainer.step()l = loss(net(features), labels)print(f'epoch{epoch + 1}, loss{1:f}')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/887024.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

亿咖通科技应邀出席微软汽车行业智享会,分享ECARX AutoGPT全新实践

11月14日,全球出行科技企业亿咖通科技(纳斯达克股票代码:ECX)应邀于广州参加由微软举行的汽车行业智享会,揭晓了亿咖通科技对“AI定义汽车”时代的洞察与技术布局,分享了亿咖通科技汽车垂直领域大模型ECARX…

鸿蒙开发学习|Promise的介绍与在鸿蒙中的使用

Promise的介绍与在鸿蒙中的使用 异步编程 学习Promise的开始,我们要先了解异步编程 一般代码的执行是单线程的机制,就是按次序执行,执行完一个任务后,再执行下一个,如果我们在页面加载的同时时候执行一个请求,拿到数据后映射到界面上,这时我们就需要异步操作来执行这个请求 异…

第二课 Model模型资源导入设置检查与优化

上期我们学习了最简单的audio音效的优化,接下来我们继续model模型资源的优化,我将汇总各路大神关于模型优化的思路和方法供你和我学习。 首先我们还是要把我们优化的目标重申一遍: 优化的目标 1.文件体积尽可能小 2.内存占用尽可能小 3.…

小米路由器用外网域名访问管理界面

本文在Redmi AX3000 (RA81)设置,其他型号路由器的管理界面端口可能各不相同。 开始之前需要保证路由器SSH功能正常,如果没有SSH可以参考这里。 1. 给WAN口开放80端口 可以通过下载mixbox的firewall插件或者其他防火墙插件开放端口。 2. 把域名解析到路…

一次需升级系统的wxpython安装(macOS M1)

WARNING: The scripts libdoc, rebot and robot are installed in /Users/用户名/Library/Python/3.8/bin which is not on PATH. 背景:想在macos安装Robot Framework ,显示pip3不是最新,更新pip3后显示不在PATH上 参看博主文章末尾 MAC系统…

Leetcode 求根节点到叶节点数字之和

使用深度优先搜索 DFS 来做 我提供的代码使用的是 深度优先搜索(DFS,Depth-First Search) 算法。以下是具体的算法思想和实现步骤的解释: 算法思想 树的路径代表数字: 树中每条从根节点到叶子节点的路径可以看作一个整…

IDEA:2023版远程服务器debug

很简单,但是很多文档没有写清楚,wocao 一、首先新建一个远程jvm 二、配置 三、把上面的参数复制出来 -agentlib:jdwptransportdt_socket,servery,suspendn,address5005 四、然后把这串代码放到服务器中(这里的0.0.0.0意思是所有IP都能访问&a…

计算机毕业设计 | SpringBoot+vue汽车资讯网站 汽车购买咨询管理系统(附源码+论文)

1,绪论 1.1 研究背景 随着计算机技术的发展以及计算机网络的逐渐普及,互联网成为人们查找信息的重要场所,二十一世纪是信息的时代,所以信息的管理显得特别重要。因此,使用计算机来管理汽车资讯网站的相关信息成为必然…

RedHat系统配置静态IP

1、执行nmtui命令进入字符配置界面如下图所示 2、选择编辑连接进入 3、选择编辑进入后,将IPv4设置为手动模式后,选择显示后进行ip地址、网关、DNS的配置,配置完成后选择确定退出编辑 4、进入主界面后选择启用连接进入后,选择启用&…

Android开发教程案例源码分享-匹配动画多个头像飘动效果

Android开发教程案例源码分享-匹配动画多个头像飘动效果 匹配往往出现多个头像飘动,吸引人点击,有时出现的位置还不固定 一、思路: 用MotionLayout 二、效果图: 看视频更直观点: Android开发教程案例源码分享-匹配…

设计LRU缓存

LRU缓存 LRU缓存的实现思路LRU缓存的操作C11 STL实现LRU缓存自行设计双向链表 哈希表 LRU(Least Recently Used,最近最少使用)缓存是一种常见的缓存淘汰算法,其基本思想是:当缓存空间已满时,移除最近最少使…

SAM-Med2D 训练完成后boxes_prompt没有生成mask的问题

之前对着这这篇文章去微调SAM_Med2D(windows环境),发现boxes_prompt空空如也。查找了好长时间问题SAM-Med2D 大模型学习笔记(续):训练自己数据集_sam训练自己数据集-CSDN博客 今天在看label2image_test.json文件的时候发现了一些端倪: 官方…

39页PDF | 毕马威_数据资产运营白皮书(限免下载)

一、前言 《毕马威数据资产运营白皮书》探讨了数据作为新型生产要素在企业数智化转型中的重要性,提出了数据资产运营的“三要素”(组织与意识、流程与规范、平台与工具)和“四重奏”(数据资产盘点、评估、治理、共享)…

在 macOS 和 Linux 中,波浪号 `~`的区别

文章目录 1、在 macOS 和 Linux 中,波浪号 ~macOS示例 Linux示例 区别总结其他注意事项示例macOSLinux 结论 2、root 用户的主目录通常是 /root解释示例切换用户使用 su 命令使用 sudo 命令 验证当前用户总结 1、在 macOS 和 Linux 中,波浪号 ~ 在 macO…

【LeetCode每日一题】——485.最大连续 1 的个数

文章目录 一【题目类别】二【题目难度】三【题目编号】四【题目描述】五【题目示例】六【题目提示】七【解题思路】八【时空频度】九【代码实现】十【提交结果】 一【题目类别】 数组 二【题目难度】 LeetCode 三【题目编号】 485.最大连续 1 的个数 四【题目描述】 给定…

windows 操作系统下载 Android源码教程

前言 开始我是装了hyber-v 虚拟机ubuntu 的,然而非常的卡顿且难用。因此我尝试在windows上使用repo,因此有了这篇文章 补充 第二天发现编译源码也需要linux命令因为源码中的很多脚本都是.sh的 因此最终通过安装WSL解决(在window应用商店就…

单片机进阶硬件部分_day2_项目实践

设计要求 从绘制原理图到画PCB板,完成智能云衣柜项目 STM32 (Modbus)云IOT衣物云端管理 华为PCB布线规范 基于IoT的智享家主控系统 步骤分析 需求分析 器件选型绘制原理图(器件连接)PCB布局、布线泪滴、铺铜、添加丝印…

接口上传视频和oss直传视频到阿里云组件

接口视频上传 <template><div class"component-upload-video"><el-uploadclass"avatar-uploader":action"uploadImgUrl":on-progress"uploadVideoProcess":on-success"handleUploadSuccess":limit"lim…

Flutter:photo_view图片预览功能

导入SDK photo_view: ^0.15.0单张图片预览&#xff0c;支持放大缩小 import package:flutter/material.dart; import package:photo_view/photo_view.dart;... ...class _MyHomePageState extends State<MyHomePage>{overrideWidget build(BuildContext context) {return…

【Linux】详解僵尸进程与孤儿进程(Z僵死状态引发的内存泄漏与处理办法)

&#x1f308; 个人主页&#xff1a;谁在夜里看海. &#x1f525; 个人专栏&#xff1a;《C系列》《Linux系列》《算法系列》 ⛰️ 丢掉幻想&#xff0c;准备斗争 目录 引言 一、僵尸进程 1.子进程的创建与退出 2.进程表 3.僵尸状态产生 4.直观感受一下&#xff1a; 二、…