实现了两种不同的图像处理和物体检测方法

这段代码实现了两种不同的图像处理和物体检测方法:一种是基于Canny边缘检测与轮廓分析的方法,另一种是使用TensorFlow加载预训练SSD(Single Shot Multibox Detector)模型进行物体检测。

1. Canny边缘检测与轮廓分析:

首先,通过OpenCV进行图像处理,找到矩形物体并进行绘制:

image = cv2.imread('U:/1.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 高斯模糊
blurred = cv2.GaussianBlur(gray, (5, 5), 0)# Canny边缘检测
edges = cv2.Canny(blurred, 50, 150)# 查找轮廓
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)for contour in contours:# 逼近多边形epsilon = 0.04 * cv2.arcLength(contour, True)approx = cv2.approxPolyDP(contour, epsilon, True)# 如果轮廓有4个点且是矩形if len(approx) == 4:# 计算矩形的长宽比x, y, w, h = cv2.boundingRect(approx)aspect_ratio = float(w) / hif 0.8 < aspect_ratio < 1.2:  # 如果长宽比接近1,表示是矩形# 绘制矩形cv2.drawContours(image, [approx], -1, (0, 255, 0), 2)# 显示结果
cv2.imshow("Detected Rectangles", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
  • 步骤:
    1. 灰度化:通过cv2.cvtColor()将图像转换为灰度图。
    2. 高斯模糊:使用cv2.GaussianBlur()进行模糊处理,减少噪声。
    3. Canny边缘检测:通过cv2.Canny()检测图像中的边缘。
    4. 查找轮廓:使用cv2.findContours()获取图像的外部轮廓。
    5. 轮廓逼近:通过cv2.approxPolyDP()简化轮廓形状,逼近为多边形。
    6. 筛选矩形:通过检测轮廓点数为4的多边形,计算长宽比并判断其是否接近正方形(长宽比介于0.8和1.2之间)。
    7. 绘制矩形:如果符合条件,使用cv2.drawContours()绘制绿色矩形框。

2. SSD模型物体检测:

接下来,使用TensorFlow加载预训练的SSD模型,并在图像上进行物体检测,最后绘制检测框:

# 加载预训练的SSD模型
model = tf.saved_model.load('ssd_mobilenet_v2_coco/saved_model')# 读取图片
img = cv2.imread('image_path')
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
input_tensor = tf.convert_to_tensor(img_rgb)
input_tensor = input_tensor[tf.newaxis, ...]  # 扩展维度# 执行推理
model_fn = model.signatures['serving_default']
output_dict = model_fn(input_tensor)# 获取检测结果
boxes = output_dict['detection_boxes'].numpy()[0]  # 边界框
scores = output_dict['detection_scores'].numpy()[0]  # 置信度
classes = output_dict['detection_classes'].numpy()[0]  # 标签# 筛选出矩形
threshold = 0.5
for i in range(len(scores)):if scores[i] > threshold:y1, x1, y2, x2 = boxes[i]x1, y1, x2, y2 = int(x1 * img.shape[1]), int(y1 * img.shape[0]), int(x2 * img.shape[1]), int(y2 * img.shape[0])cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)# 显示图像
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.imshow(img_rgb)
plt.axis('off')
plt.show()
  • 步骤:
    1. 加载SSD模型:通过tf.saved_model.load()加载一个预训练的SSD模型(ssd_mobilenet_v2_coco)。
    2. 读取图像:使用cv2.imread()加载图像,并将其转换为RGB格式。
    3. 图像处理:将图像转换为TensorFlow的张量格式,并扩展为批处理维度。
    4. 推理过程:通过模型的signatures['serving_default']执行推理,获得检测的边界框、置信度和标签。
    5. 筛选结果:根据置信度(scores)大于设定的阈值(0.5)进行筛选。
    6. 绘制边界框:使用cv2.rectangle()绘制绿色矩形框,将检测到的物体框出。
    7. 显示图像:使用matplotlib.pyplot显示处理后的图像。

总结:

  • Canny边缘检测与轮廓分析:通过对图像边缘进行检测,使用轮廓分析找出矩形,并通过长宽比进一步筛选目标。
  • SSD物体检测:利用TensorFlow预训练的SSD模型进行物体检测,并在图像中绘制检测到的物体框。

这两种方法可以结合使用,在某些应用中,如检测特定形状(矩形)和使用深度学习检测物体时,互为补充。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/886558.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Git 修改用户名(user.name)和用户邮件地址(user.email)的方法和作用

文章目录 修改方法修改作用 修改方法 首先&#xff0c;需要在本地计算机上打开Git Bash&#xff0c;然后确定你是只需要修改当前Git仓库的用户名和用户邮件地址&#xff0c;还是计算机上所有Git仓库的用户名和用户邮件地址。 对于只修改当前Git仓库的用户名和用户邮件地址的情…

RabbitMQ-死信队列(golang)

1、概念 死信&#xff08;Dead Letter&#xff09;&#xff0c;字面上可以理解为未被消费者成功消费的信息&#xff0c;正常来说&#xff0c;生产者将消息放入到队列中&#xff0c;消费者从队列获取消息&#xff0c;并进行处理&#xff0c;但是由于某种原因&#xff0c;队列中的…

ALSA - (高级Linux声音架构)是什么?

ALSA是Linux声音系统的核心组件&#xff0c;让用户可以精细控制声音硬件和声音进出。它通过抽象层屏蔽了硬件复杂性&#xff0c;使开发者能够专注于功能实现。这篇文章将逐步解析ALSA的基础知识&#xff0c;包括其运作原理、应用场景&#xff0c;以及如何完成一个基本配置和使用…

Ceph层次架构分析

Ceph的层次结构可以从逻辑上自下向上分为以下几个层次&#xff1a; 一、基础存储系统RADOS层 功能&#xff1a;RADOS&#xff08;Reliable Autonomic Distributed Object Store&#xff09;是Ceph的底层存储系统&#xff0c;提供了分布式存储的核心功能。它是一个完整的对象存…

常见error集合

Cannot use import statement outside a module 原因&#xff1a;在commonJS中用了es6的语法&#xff0c;import。分析&#xff1a; 一般我们的运行环境按照模块化标准来分&#xff0c;可以分为es6和commonJS两种&#xff0c;在es6中引入模块用import&#xff0c;在commonJS中…

在连锁零售行业中远程控制软件的应用

在连锁零售行业&#xff0c;远程控制软件正逐渐成为提高效率和降低成本的重要工具。作为零售经理&#xff0c;您可能已经注意到这种技术带来的变化。试想一下&#xff0c;无论您身在何处&#xff0c;都可以实时监控商店的运营情况&#xff0c;甚至在远离的地方解决顾客的问题。…

【MySQL】MySQL中的函数之JSON_REPLACE

在 MySQL 中&#xff0c;JSON_REPLACE() 函数用于在 JSON 文档中替换现有的值。如果指定的路径不存在&#xff0c;则 JSON_REPLACE() 不会修改 JSON 文档。如果需要添加新的键值对&#xff0c;可以使用 JSON_SET() 函数。 基本语法 JSON_REPLACE(json_doc, path, val[, path,…

JS学习日记(jQuery库)

前言 今天先更新jQuery库的介绍&#xff0c;它是一个用来帮助快速开发的工具 介绍 jQuery是一个快速&#xff0c;小型且功能丰富的JavaScript库&#xff0c;jQuery设计宗旨是“write less&#xff0c;do more”&#xff0c;即倡导写更少的代码&#xff0c;做更多的事&#xf…

Go语言24小时极速学习教程(五)Go语言中的SpringMVC框架——Gin

作为一个真正能用的企业级应用&#xff0c;怎么能缺少RESTful接口呢&#xff1f;所以我们需要尝试在Go语言环境中写出我们的对外接口&#xff0c;这样前端就可以借由Gin框架访问我们数据库中的数据了。 一、Gin框架的使用 1. 安装 Gin 首先&#xff0c;你需要在你的 Go 项目…

支持用户注册和登录、发布动态、点赞、评论、私信等功能的社交媒体平台创建!!!

需要整体源代码的可以在我的代码仓下载https://gitcode.com/speaking_me/social-media-platformTest.git 社交媒体平台 描述&#xff1a;社交媒体平台需要支持用户注册、发布动态、点赞、评论、私信等功能。 技术栈&#xff1a; 前端&#xff1a;React, Angular, Vue.js后端…

数字IC后端实现之Innovus specifyCellEdgeSpacing和ICC2 set_placement_spacing_rule的应用

昨天帮助社区IC训练营学员远程协助解决一个Calibre DRC案例。通过这个DRC Violation向大家分享下Innovus和ICC2中如何批量约束cell的spacing rule。 数字IC后端手把手实战教程 | Innovus verify_drc VIA1 DRC Violation解析及脚本自动化修复方案 下图所示为T12nm A55项目的Ca…

Spring Boot中的自动装配机制

文章目录 1. 什么是自动装配&#xff1f;2. 自动装配是如何工作的&#xff1f;3. 如何开启自动装配&#xff1f;4. 自动装配的注意事项5. 结语推荐阅读文章 在Spring Boot的世界里&#xff0c;自动装配&#xff08;Auto-configuration&#xff09;就像春风拂面&#xff0c;轻轻…

【时间之外】IT人求职和创业应知【37】-AIGC私有化

目录 新闻一&#xff1a;2024智媒体50人成都会议暨每经20周年财经媒体峰会召开 新闻二&#xff1a;全球机器学习技术大会在北京召开 新闻三&#xff1a;区块链技术在金融领域的应用取得新突破 不知不觉的坚持了1个月&#xff0c;按照心理学概念&#xff0c;还要坚持2个月&am…

基于语法树的SQL自动改写工具开发系列(2)-使用PYTHON进行简单SQL改写的开发实战

一、前言 前面一篇写了如何搭建环境&#xff0c;本文接着讲怎么使用antlr4进行开发。 二、实战 根据上一篇&#xff0c;基于语法树的SQL自动改写工具开发系列&#xff08;1&#xff09;-离线安装语法树解析工具antlr4-DA-技术分享-M版,先在本地部署好开发环境。 DEMO 1 写…

基于单片机智能温室大棚监测系统

本设计以单片机为核心的智能温室大棚监测系统&#xff0c;用于监测大棚内的温湿度、土壤湿度、CO2浓度和光照强度。该系统以STM32F103C8T6芯片为核心控制单元&#xff0c;涵盖电源、按键、NB-IoT模块、显示屏模块、空气温湿度检测、土壤湿度检测、二氧化碳检测和光敏电阻等模块…

JavaScript逆向爬虫教程-------基础篇之常用的编码与加密介绍(python和js实现)

目录 一、编码与加密原理 1.1 ASCII 编码1.2 详解 Base64 1.2.1 Base64 的编码过程和计算方法1.2.2 基于编码的反爬虫设计1.2.3 Python自带base64模块实现base64编码解码类封装 1.3 MD5消息摘要算法 1.3.1 MD5 介绍1.3.2 Python实现md5以及其他常用消息摘要算法封装 1.4 对称加…

RHCSA学习超详细知识点2命令篇

输入命令行的语法 终端中执行命令需要遵照一定的语法&#xff0c;输入命令的格式如下&#xff1a; 命令 参数命令 -选项 参数 输入命令时可以包含多个选项&#xff0c;假如一个命令有-a,-b,-c,-d四个选项&#xff0c;可以写作 命令 -a -b -c -d 参数 这里的多个选项可以“提…

【SQL】mysql常用命令

为方便查询&#xff0c;特整理MySQL常用命令。 约定&#xff1a;$后为Shell环境命令&#xff0c;>后为MySQL命令。 1 常用命令 第一步&#xff0c;连接数据库。 $ mysql -u root -p # 进入MySQL bin目录后执行&#xff0c;回车后输入密码连接。# 常用参数&…

Java结合ElasticSearch根据查询关键字,高亮显示全文数据。

由于es高亮显示机制的问题。当全文内容过多&#xff0c;且搜索中标又少时&#xff0c;就会出现高亮结果无法覆盖全文。因此需要根据需求手动替换。 1.根据es的ik分词器获取搜索词的分词结果。 es部分&#xff1a; //中文分词解析 post /_analyze {"analyzer":"…

Springboot 日志处理(非常详细)

日志存入数据库&#xff08;AOP&#xff09; 1.引入aop依赖 <!-- aop依赖 --> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-aop</artifactId> </dependency> 2.创建自定义注解类&a…