机器学习(1)

一、机器学习

机器学习(Machine Learning, ML)是人工智能(Artificial Intelligence, AI)的一个分支,它致力于开发能够从数据中学习并改进性能的算法和模型。机器学习的核心思想是通过数据和经验自动优化算法,而不是通过显式的编程规则。

1.1、机器学习的基本概念

  • 数据:机器学习的基础是数据。数据可以是结构化的(如数据库中的表格数据)或非结构化的(如文本、图像、音频等)。

  • 模型:模型是机器学习算法的核心,它是一个数学表示,用于从输入数据中学习并做出预测或决策。

  • 学习:学习是指模型通过数据进行训练,调整其内部参数以最小化预测误差的过程。

  • 特征:特征是数据中的变量或属性,模型使用这些特征来进行预测或分类。

  • 标签:标签是数据中的目标变量,模型通过学习特征和标签之间的关系来进行预测。

1.2、机器学习的分类

  • 监督学习
  • 半监督学习
  • 无监督学习
  • 强化学习

二、机器学习步骤

  • 收集数据:数据是机器学习的基础。
  • 准备数据:高质量的数据才能提高模型精准度。
  • 训练模型:对处理后的数据进行训练,并留存部分数据用作验证。
  • 评估模型:对模型进行验证,确定模型的精准度。
  • 提高性能:对代码和模型进行优化。

2.1、前期准备——scikit-learn的安装

执行下面的代码

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple scikit-learn

pip install scikit-learn

2.2、数据集

2.2.1、数据集的分类
  • 玩具数据集:轻量的数据集,直接在sklearn库本地,无需下载
    在这里插入图片描述
    示例:
from sklearn.datasets import load_iris # type: ignoreiris = load_iris() # type: ignore
print(iris.data)
  • 现实数据集:数据量大,需要从网络上下载
    在这里插入图片描述
from sklearn.datasets import fetch_20newsgroups #这是一个20分类的数据news = fetch_20newsgroups(data_home=None,subset='all')
print(len(news.data))
2.2.2、数据集的操作
# data 特征
# feature_names 特征描述
# target  目标
# target_names  目标描述
# DESCR 数据集的描述
# filename 下后到本地保存后的文件名
2.2.3、读取本地文件
本地csv文件
import pandas as pd # type: ignoredata = pd.read_csv('../dataset/ss.csv')
print(data)
本地ecxel文件

在读取excel文件时,需要使用openpyxl来读取,
我是用pip命令来安装的该引擎

pip install openpyxl
import pandas as pd# type: ignore# 指定使用 openpyxl 引擎来读取 Excel 文件
data = pd.read_excel('../dataset/ss.xlsx', engine='openpyxl')
# print(data)# 选择特定的列
x = data.iloc[:, [0, 1, 2]]
y = data.iloc[:, [-2]]# print(x)
print(y)
2.2.4、数据集的划分
数据集划分函数
from sklearn.model_selection import train_test_split # type: ignore
参数注释

参数
(1) *array
这里用于接收1到多个"列表、numpy数组、稀疏矩阵或padas中的DataFrame"。
(2) **options, 重要的关键字参数有:
test_size 值为0.0到1.0的小数,表示划分后测试集占的比例
random_state 值为任意整数,表示随机种子,使用相同的随机种子对相同的数据集多次划分结果是相同的。否则多半不同
strxxxx 分层划分,填y
2 返回值说明
返回值为列表list, 列表长度与形参array接收到的参数数量相关联, 形参array接收到的是什么类型,list中对应被划分出来的两部分就是什么类型

list数据数据划分
import numpy as np# type: ignore
from sklearn.model_selection import train_test_split# type: ignoreX=[[11,2,3,31,111],[12,2,3,32,112],[1,23,3,33,113],[14,2,3,34,114],[15,2,3,35,115],[16,2,3,36,116],[1,23,3,36,117],[1,23,3,316,118],[1,23,3,326,119],[1,23,3,336,120]
]
y=[1,1,1,1,1,2,2,2,2,2]
# 打印生成的数据
print("随机生成的x数据:")
print(X)
print("标签y:")
print(y)# 划分训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(X, y, train_size=0.8, stratify=y)# 打印划分结果
print("训练集 x_train:\n")
print(x_train)
print("测试集 x_test:\n")
print(x_test)
print("训练集标签 y_train:\n")
print(y_train)
print("测试集标签 y_test:\n")
print(y_test)
ndarray的数据集划分
from sklearn.model_selection import train_test_split# type: ignore
import numpy as np# type: ignorex = np.arange(100).reshape(50,2)
# print(x)
x_train,x_test = train_test_split(x,test_size=0.8,random_state=42)
print(x_train)
print("----------------------------------")
print(x_test)
dataFrame的数据集划分
import numpy as np# type: ignore
import pandas as pd# type: ignore
from sklearn.model_selection import train_test_split# type: ignore# 数据集的划分
data = np.arange(1,100).reshape(33, 3)
data = pd.DataFrame(data,columns=['a','b','c'])
# print(data)
x_train,x_test = train_test_split(data,test_size=0.3)
print("\n",x_train)
print("--------------------------")
print("\n",x_test)
玩具数据集划分
# 鸢尾花数据集划分
from sklearn import datasets# type: ignore
from sklearn.model_selection import train_test_split# type: ignoreiris = datasets.load_iris()
x = iris.data
y = iris.target
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=4)
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)
print(iris.feature_names)
print(iris.target_names)
现实数据集划分

import numpy as np# type: ignorefrom sklearn.datasets import fetch_20newsgroups# type: ignore
from sklearn.model_selection import train_test_split# type: ignorenew_date = fetch_20newsgroups(data_home='../dataset/',subset='train')
# print(new_date.data[0])x_train,x_test,y_train,y_test = train_test_split(new_date.data,new_date.target,test_size=0.2,random_state=666)
print(np.array(x_train).shape)
print(np.array(x_test).shape)
print(np.array(y_train).shape)
print(np.array(y_test).shape)print(new_date.target_names)

2.3、特征工程

特征工程api
# DictVectorizer  		字典特征提取
# CountVectorizer 		文本特征提取
# TfidfVectorizer 		TF-IDF文本特征词的重要程度特征提取 
# MinMaxScaler 			归一化
# StandardScaler 		标准化
# VarianceThreshold 	底方差过滤降维
# PCA  					主成分分析降维
#转换器对象调用fit_transform()进行转换, 其中fit用于计算数据,transform进行最终转换fit_transform()可以使用fit()和transform()代替fit_transform()、fit()和transform()之间的区别1. fit()
作用: fit() 方法用于计算数据集的统计信息(如均值、方差等),以便后续的转换操作。
返回值: 无返回值,直接在对象内部存储计算结果。
适用场景: 当你需要对训练数据集进行统计信息的计算时使用。2. transform()
作用: transform() 方法使用 fit() 计算的统计信息对数据集进行转换。
返回值: 返回转换后的数据集。
适用场景: 当你需要对训练数据集或测试数据集进行相同的转换时使用。3. fit_transform()
作用: fit_transform() 方法结合了 fit() 和 transform() 的功能,先计算统计信息,然后对数据集进行转换。
返回值: 返回转换后的数据集。
适用场景: 当你需要对训练数据集进行一次性计算和转换时使用。
字典的特征提取和数据集划分
from sklearn.feature_extraction import DictVectorizer# type: ignore
from sklearn.model_selection import train_test_split# type: ignoredata_dict = [{'city': '北京', 'count':2300,'tempertrye': 41},{'city': '上海', 'count':2300,'tempertrye': 39}, {'city': '深圳', 'count':2750,'tempertrye': 30},{'city': '广州', 'count':2500,'tempertrye': 40},{'city': '杭州', 'count':2800,'tempertrye': 33},{'city': '西安', 'count':2700,'tempertrye': 28},{'city': '西安', 'count':2700,'tempertrye': 28}
]# sparse=False:表示返回完整的矩阵,True:表示返回稀疏矩阵
model = DictVectorizer(sparse=False)
data_new = model.fit_transform(data_dict)
# print(data_new)
x_train,y_train = train_test_split(data_new,test_size=0.2,random_state=666)
print(x_train)
print('------------------------------------------------------------------------------')
print(y_train)
文本特征提取

from sklearn.feature_extraction.text import CountVectorizercorpus =  ['I love machine learning.Its awesome.', 'Its a amazon book', 'Amazon is a great company']# 创建一个词频提取对象
vectorizer = CountVectorizer(stop_words=['amzzon'])
# 提取特征词频
X = vectorizer.fit_transform(corpus)print(X)print(X.toarray())
# 打印特征词频
print(vectorizer.get_feature_names_out())
CountVectorizer 中文本特征提取
中文提取需要用到库jieba

使用下面的命令进行安装

pip install jieba
import jieba
from sklearn.feature_extraction.text import CountVectorizer
# arr = list(jieba.cut("我爱北京天安门"))
# print (arr)
# str01 = ' '.join(arr)
# print (str01)
def my_cut(text):#传入没有断词的文本,用jieba分词工具转化为数据容器,然后把数据容器中的元素用空格连接起来return ' '.join(list(jieba.cut(text)))corpus = ['我爱北京天安门','我爱成都天府广场']
# 创建一个词频提取对象
vectorizer = CountVectorizer(stop_words=[])
# 提取词频
data = [my_cut(el) for el in corpus]
x = vectorizer.fit_transform(data) 
# print(x)
# print(x.toarray())
print(vectorizer.get_feature_names_out())data02 = pd.DataFrame(x.toarray(),columns=vectorizer.get_feature_names_out())
print(data02)
TfidfVectorizer TF-IDF文本特征词的重要程度特征提取
import jieba
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizerdef cut_words(text):return " ".join(list(jieba.cut(text)))data = ["教育学会会长期间,坚定支持民办教育事业!",  "扶持民办,学校发展事业","事业做出重大贡献!"]
data_new = [cut_words(v) for v in data]transfer = TfidfVectorizer(stop_words=['期间', '做出',"重大贡献"]) 
data_final = transfer.fit_transform(data_new)pd.DataFrame(data_final.toarray(), columns=transfer.get_feature_names_out())
无量纲化
MinMaxScaler 归一化
data = [[1, 2, 3, 4],[1, 2, 3, 4],[1, 2, 3, 4],[1, 2, 3, 4]
]
tran = MinMaxScaler(feature_range(1,2))
data = tran.fit_transfrom(data)
print(data)
StandardScaler 标准化
import numpy as np
from sklearn.preprocessing import StandardScaler# 创建一个示例数据集
X = np.array([[1, 2], [3, 4], [5, 6]])# 初始化 StandardScaler
scaler = StandardScaler()# 对训练数据进行 fit_transform
X_train_scaled = scaler.fit_transform(X)# 打印标准化后的训练数据
print("标准化后的训练数据:")
print(X_train_scaled)# 创建一个新的测试数据集
X_test = np.array([[7, 8], [9, 10]])# 对测试数据进行 transform
X_test_scaled = scaler.transform(X_test)# 打印标准化后的测试数据
print("标准化后的测试数据:")
print(X_test_scaled)

2.4、特征降维

VarianceThreshold 低方差过滤特征选择
# 1、获取数据,data是一个DataFrame,可以是读取的csv文件
data=pd.DataFrame([[10,11],[11,13],[11,11],[11,15],[11,91],[11,13],[11,12],[11,16]])
print("data:\n", data)   
# 2、实例化一个转换器类
transfer = VarianceThreshold(threshold=1)#0.1阈值
# 3、调用fit_transform
data_new = transfer.fit_transform(data)
print("data_new:\n",data_new)
PCA降维
from sklearn.dec**** import PCAdata = [[1, 2, 3, 4],[1, 2, 3, 4],[1, 2, 3, 4],[1, 2, 3, 4]
]
pac = PCA(n_com**** = 0.95)data = pca.fit_transfrom(data)print(f"降维后的数据为:{data}"}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/886137.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Kafka】集成案例:与Spark大数据组件的协同应用

🐇明明跟你说过:个人主页 🏅个人专栏:《大数据前沿:技术与应用并进》🏅 🔖行路有良友,便是天堂🔖 目录 一、引言 1、什么是kafka 2、Kafka 的主要特性 3、Kafka 的…

【卡尔曼滤波】递归算法Recursive的应用 C语言、Python实现(Kalman Filter)

【卡尔曼滤波】递归算法Recursive的应用 C语言、Python实现(Kalman Filter) 更新以gitee为准: gitee地址 文章目录 递归算法算术平均的递归算法例子卡尔曼滤波递归Python实现C语言实现与普通卡尔曼滤波的比较附录:压缩字符串、大…

python+pptx:(二)添加图片、表格、形状、模版渲染

目录 图片 表格 合并单元格 填充色、边距 写入数据 形状 模版渲染 上一篇:pythonpptx:(一)占位符、文本框、段落操作_python输出ppt母版占位符标号-CSDN博客 from pptx import Presentation from pptx.util import Cm, In…

【Windows】CMD命令学习——系统命令

CMD(命令提示符)是Windows操作系统中的一个命令行解释器,允许用户通过输入命令来执行各种系统操作。 系统命令 systeminfo - 显示计算机的详细配置信息。 tasklist - 显示当前正在运行的进程列表。 taskkill - 终止正在运行的进程。例如&am…

Java的栈与队列以及代码实现

Java栈和队列 栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组实现)用队列实现栈用栈来实现队列总结 栈的概念(Stack) 栈是常见的线性数据结构&…

Node.js is Web Scale

点击“打开/下载题目”进去看看情况: 为了方便查看翻译成中文简体来看: emmm,看不懂什么意思,查看源代码,js表示是一段JavaScript代码,丢给AI分析一下: // server.js const express require(&…

缓冲区溢出,数据被踩的案例学习

继续在ubuntu上学习GDB,今天要学习的是缓冲区溢出。 程序的地址: GitHub - gedulab/gebypass: bypass password by heap buffer overflow 编译的方法: gcc -g -O2 -o gebypass gebypass.c 照例设置一下科学shangwang代理: e…

数字人直播骗局大曝光!真假源码厂商搭部署的源码有何差异?

随着数字人直播技术的不断发展成熟,它所蕴含着的市场前景和收益潜力开始逐渐显化,使得有意向入局的人数持续增多的同时,也让不少骗子看到了可乘之机,从而炮制出了一个又一个的数字人直播骗局。 其中,最为经典的便是dai…

#渗透测试#SRC漏洞挖掘#云技术基础03之容器相关

目录 一、Podman相关 (一)Podman简介 (二)Pod相关操作 二、容器相关 (一)容器概念 (二)容器的历史发展 (三)Capabilities相关 三、Kubernetes&#x…

前端搭建低代码平台,微前端如何选型?

目录 背景 一、微前端是什么? 二、三大特性 三、现有微前端解决方案 1、iframe 2、Web Components 3、ESM 4、EMP 5、Fronts 6、无界(文档) 7、qiankun 四、我们选择的方案 引入qiankun并使用(src外层作为主应用) 主应…

Windows VSCode .NET CORE WebAPI Debug配置

1.安装C#插件 全名C# for Visual Studio Code,选择微软的 2. 安装C# Dev Kit插件 全名C# Dev Kit for Visual Studio Code,同样是选择微软的 3.安装Debugger for Unity 4.配置launch.json 文件 {"version": "0.2.0","config…

Linux——GPIO输入输出裸机实验

学习了正点原子Linux环境下的GPIO的输入输出的裸机实验学习,现在进行一下小结: 启动文件start.S的编写 .global _start .global _bss_start _bss_start:.word __bss_start.global _bss_end _bss_end:.word __bss_end_start:/*设置处理器进入SVC模式*/m…

Cyberchef配合Wireshark提取并解析TCP/FTP流量数据包中的文件

前一篇文章中讲述了如何使用cyberchef提取HTTP/TLS数据包中的文件,详见《Cyberchef配合Wireshark提取并解析HTTP/TLS流量数据包中的文件》,链接这里,本文讲述下如何使用cyberchef提取FTP/TCP数据包中的文件。 FTP 是最为常见的文件传输协议,和HTTP协议不同的是FTP协议传输…

51c大模型~合集42

我自己的原文哦~ https://blog.51cto.com/whaosoft/11859244 #猎户座 「草莓」即将上线,OpenAI新旗舰大模型曝光,代号「猎户座」 ChatGPT 要进化了? 本月初,OpenAI 创始人、CEO 山姆・奥特曼突然在 X 上发了一张照片&#xff0…

【NOIP提高组】潜伏者

【NOIP提高组】潜伏者 💐The Begin💐点点关注,收藏不迷路💐 R国和S国正陷入战火之中,双方都互派间谍,潜入对方内部,伺机行动。 历尽艰险后,潜伏于 S 国的R 国间谍小C 终于摸清了S 国…

安培环路定理

回忆 静电场中的回路定理:→静电场是保守场 安培环路定理 1、圆形回路包围无限长载流直导线 (1)回路逆时针 (2)回路顺时针 规定: 回路正向由右手螺旋定则判断(根据回路绕行方向,…

Locally Linear Embedding (LLE)

Locally Linear Embedding (LLE) Locally Linear Embedding (LLE) 是一种非线性降维算法,通常用于高维数据的流形学习。其核心思想是:假设数据点在局部是线性结构,通过保留每个数据点的局部线性结构关系,将数据嵌入到低维空间中。…

wsl配置ubuntu22.04,并配置docker

wsl配置ubuntu22.04,并配置docker 文章目录 wsl配置ubuntu22.04,并配置docker一、在Windows上安装Linux子系统前提条件安装步骤 二、wsl安装系统到其他盘①查看wsl运行状态,将其保持在关闭状态②导出当前Linux的镜像③注销之前的系统并检查④…

「QT」文件类 之 QDir 目录类

✨博客主页何曾参静谧的博客📌文章专栏「QT」QT5程序设计📚全部专栏「Win」Windows程序设计「IDE」集成开发环境「UG/NX」BlockUI集合「C/C」C/C程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「UG/NX」NX定制…

expo5.2运行web报错Cannot find module ‘react‘

修改app.json中的web output 配置为 ‘single’ 可以解决 expo run web 这个错误问题 "web": {"bundler": "metro","output": "single","favicon": "./assets/images/favicon.png"},相关链接&#xff1…