FPGA实现PCIE采集电脑端视频转SFP光口万兆UDP输出,基于XDMA+GTX架构,提供2套工程源码和技术支持

目录

  • 1、前言
    • 工程概述
    • 免责声明
  • 2、相关方案推荐
    • 我已有的PCIE方案
    • 10G Ethernet Subsystem实现万兆以太网物理层方案
  • 3、PCIE基础知识扫描
  • 4、工程详细设计方案
    • 工程设计原理框图
    • 电脑端视频
    • PCIE视频采集QT上位机
    • XDMA配置及使用
    • XDMA中断模块
    • FDMA图像缓存
    • UDP视频组包发送
    • UDP协议栈
    • MAC数据缓冲FIFO
    • 10G Ethernet Subsystem 详解
    • 10G Ethernet Subsystem 使用
    • 10G Ethernet Subsystem 配置
    • 多个10G Ethernet Subsystem 的主从搭配使用
    • IP地址、端口号的修改
    • SFP光口
    • UDP视频接收显示QT上位机
    • Windows版本XDMA驱动安装
    • Linux版本XDMA驱动安装
    • 工程源码架构
    • Vivado工程注意事项
    • PCIE上板调试注意事项
  • 5、vivado工程源码1详解-->Kintex7-35T版本
  • 6、vivado工程源码2详解-->Zynq7100版本
  • 7、工程移植说明
    • vivado版本不一致处理
    • FPGA型号不一致处理
    • 其他注意事项
  • 8、上板调试验证
    • 准备工作
    • 电脑端IP地址配置
    • QT上位机配置
    • 电脑端视频通过PCIE到FPGA端转UDP网络视频输出效果演示
  • 9、福利:工程代码的获取

FPGA实现PCIE采集电脑端视频转SFP光口万兆UDP输出,基于XDMA+GTX架构,提供2套工程源码和技术支持

1、前言

FPGA实现PCIE数据传输现状;
目前基于Xilinx系列FPGA的PCIE通信架构主要有以下2种,一种是简单的、傻瓜式的、易于开发的、对新手友好的XDMA架构,该架构对PCIE协议底层做了封装,并加上了DMA引擎,使得使用的难度大大降低,加之Xilinx提供了配套的Windows和Linux系统驱动和上位机参考源代码,使得XDMA一经推出就让工程师们欲罢不能;另一种是更为底层的、需要设计者有一定PCIE协议知识的、更易于定制化开发的7 Series Integrated Block for PCI Express架构,该IP实现的是PCIe 的物理层、链路层和事务层,提供给用户的是以 AXI4-stream 接口定义的TLP 包,使用该IP 核,需要对PCIe 协议有清楚的理解,特别是对事务包TLP报文格式;本设计采用第一种方案,使用XDMA的中断模式实现PCIE通信;本架构既有简单的测速实验,也有视频采集应用;

FPGA实现万兆UDP网络通信现状;
Xilinx系列FPGA实现UDP网络通信目前仅有一种方案,即使用Xilinx官方的IP核实现物理层功能,比如常见的10G Ethernet Subsystem、10G Ethernet PCS/PMA、10G/25G Ethernet Subsystem等,UDP协议栈部分很简单,可使用verilog代码直接实现;本设计使用10G Ethernet Subsystem方案实现万兆以太网物理层功能;

工程概述

本设计使用Xilinx系列FPGA为平台,实现电脑端视频通过PCIE到FPGA端转UDP网络视频输出;输入源为电脑端实时视频,也就是电脑桌面的实时图像,分辨率为1280x720@60Hz;打开QT上位机,QT上位机会实时采集电脑端视频,通过PCIE总线发送到FPGA板卡;FPGA内部的XDMA IP核接收到电脑端发来的视频后,将视频写入板载DDR3中缓存;同时使用本博主常用的FDMA图像缓存架构将视频从板载DDR3中读出;然后视频送入UDP视频组包发送模块,将视频加上包头和其他控制信息;然后组包的视频送入UDP协议栈进行以太网帧组帧;UDP协议栈输出的MAC数据经过FIFO组进行数据缓冲;MAC数据再送入Xilinx官方的10G Ethernet Subsystem IP核实现万兆以太网物理层;再经过板载的SFP+光口用光纤传输到电脑端;电脑端使用万兆网卡接收数据,并在QT上位机接收UDP网络视频并显示出来;本博客提供4套工程源码,具体如下:
在这里插入图片描述
现对上述2套工程源码做如下解释,方便读者理解:

工程源码1

开发板FPGA型号为Xilinx–>Kintex7–35T–xc7k325tffg676-2;输入源为电脑端实时视频,也就是电脑桌面的实时图像,分辨率为1280x720@60Hz;打开QT上位机,QT上位机会实时采集电脑端视频,通过PCIE总线发送到FPGA板卡;FPGA内部的XDMA IP核接收到电脑端发来的视频后,将视频写入板载DDR3中缓存;同时使用本博主常用的FDMA图像缓存架构将视频从板载DDR3中读出;然后视频送入UDP视频组包发送模块,将视频加上包头和其他控制信息;然后组包的视频送入UDP协议栈进行以太网帧组帧;UDP协议栈输出的MAC数据经过FIFO组进行数据缓冲;MAC数据再送入Xilinx官方的10G Ethernet Subsystem IP核实现万兆以太网物理层;再经过板载的SFP+光口用光纤传输到电脑端;电脑端使用万兆网卡接收数据,并在QT上位机接收UDP网络视频并显示出来;板载的PCIE为8 Lane的PCIE2.0;单Lane线速率配置为5GT/s;板载SFP+光口;由此形成QT上位机+PCIE+XDMA+SFP+万兆UDP的高端架构;该工程适用于PCIE接口的视频采集卡或者网卡应用;

工程源码2

开发板FPGA型号为Xilinx–>Zynq7100–xc7z100ffg900-2;输入源为电脑端实时视频,也就是电脑桌面的实时图像,分辨率为1280x720@60Hz;打开QT上位机,QT上位机会实时采集电脑端视频,通过PCIE总线发送到FPGA板卡;FPGA内部的XDMA IP核接收到电脑端发来的视频后,将视频写入板载DDR3中缓存;同时使用本博主常用的FDMA图像缓存架构将视频从板载DDR3中读出;然后视频送入UDP视频组包发送模块,将视频加上包头和其他控制信息;然后组包的视频送入UDP协议栈进行以太网帧组帧;UDP协议栈输出的MAC数据经过FIFO组进行数据缓冲;MAC数据再送入Xilinx官方的10G Ethernet Subsystem IP核实现万兆以太网物理层;再经过板载的SFP+光口用光纤传输到电脑端;电脑端使用万兆网卡接收数据,并在QT上位机接收UDP网络视频并显示出来;板载的PCIE为8 Lane的PCIE2.0;单Lane线速率配置为5GT/s;板载SFP+光口;由此形成QT上位机+PCIE+XDMA+SFP+万兆UDP的高端架构;该工程适用于PCIE接口的视频采集卡或者网卡应用;

本文详细描述了FPGA实现PCIE采集电脑端视频转SFP光口万兆UDP输出的设计方案,工程代码可综合编译上板调试,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做项目开发,可应用于医疗、军工等行业的高速接口领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

2、相关方案推荐

我已有的PCIE方案

我的主页有PCIE通信专栏,该专栏基于XDMA的轮询模式实现与QT上位机的数据交互,既有基于RIFFA实现的PCIE方案,也有基于XDMA实现的PCIE方案;既有简单的数据交互、测速,也有应用级别的图像采集传输,以下是专栏地址:
点击直接前往
此外,我的主页有中断模式的PCIE通信专栏,该专栏基于XDMA的中断模式实现与QT上位机的数据交互,以下是专栏地址:
点击直接前往
此外,还有基于RIFFA架构的PCIE通信专栏,以下是专栏地址:
点击直接前往

10G Ethernet Subsystem实现万兆以太网物理层方案

Xilinx官方的10G Ethernet Subsystem IP核可实现万兆以太网物理层方案,该方案使用FPGA内部高速接口资源即可实现,关于这个方案,请参考我之前的博客,博客链接如下:
10G Ethernet Subsystem物理层+万兆UDP协议栈方案,博客链接如下:
直接点击前往
10G Ethernet Subsystem物理层+万兆TCP/IP协议栈方案,博客链接如下:
直接点击前往

3、PCIE基础知识扫描

PCIe 总线架构与以太网的 OSI 模型类似,是一种分层协议架构,分为事务层(Transaction Layer)、数据链路层(Data Link Layer) 和物理层(Physical Layer)。这些层中的每一层都分为两部分:一部分处理出站(要发送的)信息,另一部分处理入站(接收的)信息,如下图:
在这里插入图片描述
事务层
事务层的主要责任是事务层包 TLP(Transaction Layer Packet)的组装和拆卸。事务层接收来自 PCIe 设备核心层的数据,并将其封装为 TLP。TLP 用于传达事务,例如读取和写入,以及确定事件的类型。事务层还负责管理 TLP 的基于信用的流控制。每个需要响应数据包的请求数据包都作为拆分事务实现。每个数据包都有一个唯一标识符,该标识符使响应数据包可以定向到正确的始发者。数据包格式支持不同形式的寻址,具体取决于事务的类型(内存、I/O、配置和消息)。数据包可能还具有诸如 No Snoop、Relaxed Ordering 和基于 ID 的排序(IDO)之类的属性。事务层支持四个地址空间:包括三个 PCI 地址空间(内存、I/O 和配置)并添加消息空间。该规范使用消息空间来支持所有先前 PCI 的边带信号,例如中断、电源管理请求等,作为带内消息事务。

数据链路层
数据链路层充当事务层和物理层之间的中间阶段。数据链路层的主要职责包括链路管理和数据完整性,包括错误检测和错误纠正。数据链路层的发送方接受事务层组装的 TLP,计算并应用数据保护代码和 TLP序列号,以及将它们提交给物理层以在链路上传输。接收数据链路层负责检查接收到的 TLP 的完整性,并将它们提交给事务层以进行进一步处理。在检测到 TLP 错误时,此层负责请求重发 TLP,直到正确接收信息或确定链路失败为止。数据链路层还生成并使用用于链路管理功能的数据包。为了将这些数据包与事务层(TLP)使用的数据包区分开,当指代在数据链路层生成和使用的数据包时,将使用术语“数据链路层数据包(DLLP)”。

物理层
PCIe 总线的物理层为 PCIe 设备间的数据通信提供传送介质,为数据传送提供可靠的物理环境。物理层包括用于接口操作的所有电路,包括驱动器和输入缓冲器、并行至串行和串行至并行转换、PLL 和阻抗匹配电路。它还包括与接口初始化和维护有关的逻辑功能。物理层以实现特定的格式与数据链路层交换信息。该层负责将从数据链路层接收的信息转换为适当的序列化格式,并以与连接到链路另一端的设备兼容的频率和通道宽度在 PCI Express 链路上传输该信息。物理层是 PCIe 体系结构最重要,也是最难以实现的组成部分(该层对用户透明,开发 PCIe 程序时无需关心)。PCIe 总线的物理层定义了 LTSSM (Link Training and Status State Machine)状态机,PCIe 链路使用该状态机管理链路状态,并进行链路训练、链路恢复和电源管理。PCIe 总线使用端到端的连接方式,在一条PCIe 链路的两端只能各连接一个设备,这两个设备互为数据发送端和数据接收端。由于 PCIe 是支持全双工通信的,所以发送端和接收端中都含有TX (发送逻辑) 和RX (接收逻辑)。在PCIe 总线的物理链路的一个数据通路(Lane) 中,有两组差分信号,共4 根信号线组成。其中发送端的TX 与接收端的RX 使用一组差分信号连接,该链路也被称为发送端的发送链路,也是接收端的接收链路;而发送端的RX 与接收端的TX 使用另一组差分信号连接,该链路也被称为发送端的接收链路,也是接收端的发送链路。一个PCIe 链路可以由多个Lane 组成。目前PCIe 链路可以支持1、2、4、8、12、16 和32 个Lane,即×1、×2、×4、×8、×12、×16 和×32 宽度的PCIe 链路。每一个Lane 上使用的总线频率与PCIe 总线使用的版本相关。

4、工程详细设计方案

工程设计原理框图

工程设计原理框图如下:
在这里插入图片描述

电脑端视频

输入源为电脑端实时视频,也就是电脑桌面的实时图像,分辨率为1280x720@60Hz;电脑端的分辨率需要设置为1280x720@60Hz,如下:
在这里插入图片描述

PCIE视频采集QT上位机

仅提供Win10版本的QT上位机,位置如下:
在这里插入图片描述
以Win10版本为例,源码位置如下:
在这里插入图片描述
以Win10版本下,可以点击已经编译好的QT软件直接运行,位置如下:
在这里插入图片描述
QT上位机运行效果如下:
在这里插入图片描述

XDMA配置及使用

根据Xilinx官方手册,XDMA框图如下:
在这里插入图片描述
由图可知,XDMA封装了Integrated Block for PCI Express IP,不仅完成了事务层的组包解包,还添加了完整的 DMA 引擎;
XDMA 一般情况下使用AXI4 接口,AXI4 接口可以加入到系统总线互联,适用于大数据量异步传输,而且通常情况下使用 XDMA 都会使用到 BRAM 或 DDR 内存;AXI4-Stream 接口适用于低延迟数据流传输。XDMA 允许在主机内存和 DMA 子系统之间移动数据。它通过对包含有关要传输的数据的源、目标和数量的信息的“描述符”进行操作来实现此目的。这些直接内存传输既可以用于主机到卡(Host to Card,H2C)的传输,也可以用与卡到主机(Card to Host,C2H)的传输。可以将 DMA 配置为由所有通道共享一个 AXI4 Master 接口,或者为每个启用的通道提供一个 AXI4-Stream 接口。内存传输是基于每个通道的描述符链接列表指定的,DMA 从主机内存和进程中获取这些链接列表。诸如描述符完成和错误之类的事件通过中断来发出信号。XDMA 还提供多达 16 条用户中断线,这些中断线会向主机生成中断。本设计需要配置为中断模式;如下图:
在这里插入图片描述
XDMA详情参考《AXI Bridge for PCI Express Gen3 Subsystem Product Guide(PG194)》;XDMA在Block Design中如下:
在这里插入图片描述

XDMA中断模块

XDMA中断模块和XDMA IP配合使用,XDMA中断模块主要执行两个任务,一是获取XDMA的状态,输出用户中断使能信号,以指示用户此时可以发起中断,该任务通过AXI_Lite接口与XDMA连接,其从机地址受PC端软件控制;二是转发用户中断给XDMA,当用户侧检测到XDMA处于可接受中断状态时,用户逻辑可以发起中断,XDMA中断模块将此中断转发给XDMA IP;将模块直接拖入Block Design中,显示如下:
在这里插入图片描述

FDMA图像缓存

FDMA图像缓存架构实现的功能是将输入视频缓存到板载DDR3中,由于调用了Xilinx官方的MIG作为DDR控制器,所以FDMA图像缓存架构就是实现用户数据到MIG的桥接作用;架构如下:
在这里插入图片描述
FDMA图像缓存架构由FDMA控制器+FDMA组成;FDMA实际上就是一个AXI4-FULL总线主设备,与MIG对接,MIG配置为AXI4-FULL接口;FDMA控制器实际上就是一个视频读写逻辑,以写视频为例,假设一帧图像的大小为M×N,其中M代表图像宽度,N代表图像高度;FDMA控制器每次写入一行视频数据,即每次向DDR3中写入M个像素,写N次即可完成1帧图像的缓存,本设计只用到了FDMA控制器的读功能,FDMA控制器IP配置如下:
在这里插入图片描述
FDMA图像缓存架构在Block Design中如下:
在这里插入图片描述

UDP视频组包发送

UDP视频组包发送实现视频数据的组包并通过UDP协议栈发送出去,视频数据发送必须与QT上位机的接受程序一致,上位机定义的UDP帧格式包括帧头个UDP数据,QT上位机接收代码数据帧头定义如下:
在这里插入图片描述
FPGA端的UDP数据组包代码必须与上图的数据帧格式对应,否则QT无法解析,代码中定义了数据组包状态机以及数据帧,如下:
在这里插入图片描述
另外,由于UDP发送是64位数据位宽,而图像像素数据是24bit位宽,所以必须将UDP数据重新组合,以保证像素数据的对齐,这部分是整个工程的难点,也是所有FPGA做UDP数据传输的难点;UDP视频组包发送代码架构如下:
在这里插入图片描述

UDP协议栈

本UDP协议栈使用UDP协议栈网表文件,该协议栈目前并不开源,只提供网表文件,虽看不见源码但可正常实现UDP通信,但不影响使用,该协议栈带有用户接口,使得用户无需关心复杂的UDP协议而只需关心简单的用户接口时序即可操作UDP收发,非常简单;协议栈架构如下:
在这里插入图片描述
协议栈性能表现如下:
1:支持 UDP 接收校验和检验功能,暂不支持 UDP 发送校验和生成;
2:支持 IP 首部校验和的生成和校验,同时支持 ICMP 协议中的 PING 功能,可接收并响应同一个子网内部设备的 PING 请求;
3:可自动发起或响应同一个子网内设备的 ARP 请求,ARP 收发完全自适应。ARP 表可保存同一个子网内部256 个 IP 和 MAC 地址对;
4:支持 ARP 超时机制,可检测所需发送数据包的目的 IP 地址是否可达;
5:协议栈发送带宽利用率可达 93%,高发送带宽下,内部仲裁机制保证 PING 和 ARP 功能不受任何影响;
6:发送过程不会造成丢包;
7:提供64bit位宽AXI4-Stream形式的MAC接口,可与Xilinx官方的千兆以太网IP核Tri Mode Ethernet MAC,以及万兆以太网 IP 核 10 Gigabit Ethernet Subsystem、10 Gigabit Ethernet MAC 配合使用;
有了此协议栈,我们无需关心复杂的UDP协议的实现了,直接调用接口即可使用。。。
本UDP协议栈用户接口发送时序如下:
在这里插入图片描述
本UDP协议栈用户接口接收时序如下:
在这里插入图片描述

MAC数据缓冲FIFO

这里对代码中用到的数据缓冲FIFO组做如下解释:
10G Ethernet Subsystem与UDP协议栈之间的MAC数据需要通过 AXI4-Stream FIFO做缓冲,如果你对延时要求较高,可删除缓冲FIFO,以工程1为例,MAC数据缓冲FIFO代码层面如下:
在这里插入图片描述

10G Ethernet Subsystem 详解

本设计的10G Ethernet Subsystem部分包括IP调用、IP配置等,以工程1为例,代码层面如下:
在这里插入图片描述
10G Ethernet Subsystem是Xilinx推出的具有10G速率的MAC,用户接口为AXI4-Stream,使用Xilinx GT高速接口作为物理层,官方数据手册为《PG157》,本博对10G Ethernet Subsystem的解析主要是对《PG157》的翻译和总结,详细细节读者还需自行阅读官方英文原版手册;
10G Ethernet Subsystem框架如下:
在这里插入图片描述
可以看到,10G Ethernet Subsystem内部封装了Xilinx的10 Gigabit Ethernet PCS/PMA和10 Gigabit Ethernet MAC两个IP,这两个IP分别对应物理层和MAC层,IP之间通过XGMII接口连接,用户接口被封装为AXI4-Stream,可通过AXI4-Lite接口配置IP,物理层对外接口为GT,其中1588时钟同步功能可在音视频传输中启用,适应性还是很好的;关于这些底层信息,需要专业的以太网协议知识,不建议非专业人事深究,开发者一般只需要能够使用该IP即可;

现对用户接口IP指示信号做特别说明:
用户发送接口AXI4-Stream多了一个tx_ifg_delay端口,它是用于设置发送间隔,一般都默认采用最小间隔,即将 tx_ifg_delay 置为 0 即可;
用户接收接口AXI4-Stream少了一个tready 信号,这代表接收端需要具备持续接收数据的能力,防止出现数据来不及接收而产生溢出;
pcspma_status[7:0]信号用于反应物理层运行情况,最低位为1表示物理层锁定,即运行正常;
sim_speed_up 端口只有在仿真时才需要用到,用于加快仿真速度,仿真时给1,上板编译时给0;
AXI4-Lite接口对IP和内部的MAC层和物理层就你行配置,主要是对复位顺序的配置和内部数据读写测试等;

10G Ethernet Subsystem 使用

10G Ethernet Subsystem通过调用IP方式使用,这里只对重点配置讲解,如下:
在这里插入图片描述
当AXI4-Stream数据位宽选择64 bit时,要求GT连接的外部晶振必须是156.25M;这点很重要,因为它对硬件有定性要求,可以选择SIL系列可编程的差分晶振,否则硬件设计兼容性很差;

10G Ethernet Subsystem 配置

10G Ethernet Subsystem通过调用IP方式使用,通过AXI4-Lite接口对IP和内部的MAC层和物理层就你行配置,主要是对复位顺序的配置和内部数据读写测试等,代码中提供了纯verilog的配置逻辑,如下:
在这里插入图片描述

多个10G Ethernet Subsystem 的主从搭配使用

多个10G Ethernet Subsystem 的主从搭配使用的应用场景是FPGA开发板充当多光口的网卡使用,即一个FPGA挂载多个光口,每一个光口相当于一个独立的网卡,有独立的IP地址和MAC地址,类似于交换机的样子;
多个10G Ethernet Subsystem 的主从搭配使用框架如下:
在这里插入图片描述
10G Ethernet Subsystem可单独使用,当单独使用时,一个10G Ethernet Subsystem单独占用一个GT高速接口资源,单独占用一对差分时钟资源;此时的IP配置如下:
在这里插入图片描述
10G Ethernet Subsystem也可多个级联主从搭配使用,主从搭配使用时,一个10G Ethernet Subsystem当做主IP,占用一个GT高速接口资源,单独占用一对差分时钟资源;其他10G Ethernet Subsystem当做从IP,占用一个GT高速接口资源,但不占用差分时钟资源,而是使用主IP提供的参考时钟;此时的从IP配置如下:
在这里插入图片描述
但需要注意的是,这种操作的前提是,你用到的GT资源都在同一个BANK内;

IP地址、端口号的修改

UDP协议栈留出了IP地址、端口号的修改端口供用户自由修改,位置在顶层模块如下:
在这里插入图片描述

SFP光口

FPGA开发板需要至少拥有1路SFP光口,且至少支持10G速率,此外还需要SFP光模块和光纤,用于连接10网卡,我的FPGA开发板与10G 网卡连接如下:
在这里插入图片描述

UDP视频接收显示QT上位机

仅提供Win10版本的QT上位机,位置如下:
在这里插入图片描述
以Win10版本为例,源码位置如下:
在这里插入图片描述
以Win10版本下,可以点击已经编译好的QT软件直接运行,位置如下:
在这里插入图片描述
QT上位机运行效果如下:
在这里插入图片描述
我们的QT目前仅支持1280x720分辨率的视频抓图显示,但同时预留了1080P接口,对QT开发感兴趣的朋友可以尝试修改代码以适应1080P,因为QT在这里只是验证工具,不是本工程的重点,所以不再过多赘述;

Windows版本XDMA驱动安装

提供Windows和Linux系统驱动,本章节介绍Windows下XDMA驱动安装;
在这里插入图片描述
Windows下驱动安装步骤如下:友情提示,Windows下驱动秩序安装一次即可;

第一步:使系统禁用签名并进入测试模式,方法如下:
在这里插入图片描述
也可百度其他方法实现上述目的,完成后电脑屏幕右下角应有如下显示:
在这里插入图片描述
第二步:定位到驱动目录下,提供Windows7和Windows10两个版本驱动,由于我的电脑选择Windows10,如下:
在这里插入图片描述
单击鼠标右键安装即可,如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
第三步:下载FPGA工程bit到FPGA开发板,然后重启电脑,打开我的电脑–>管理–>设备管理器,应看到如下设备:
在这里插入图片描述

Linux版本XDMA驱动安装

提供Windows和Linux系统驱动,本章节介绍Linux下XDMA驱动安装;
在这里插入图片描述
Linux下驱动安装步骤如下:友情提示,Linux下,每次下载FPGA bit后都需要重启电脑才能安装驱动;

进入到Linux驱动目录下,一次执行以下两条指令即可安装,如下:
• 驱动编译终端指令:make -j8
•驱动安装终端指令:sudo insmod xdma.ko
在这里插入图片描述

工程源码架构

提供2套工程源码,以工程源码1为例,工程Block Design设计如下:
在这里插入图片描述
提供2套工程源码,以工程源码1为例,综合后的工程源码架构如下:
在这里插入图片描述

Vivado工程注意事项

Vivado工程需要配合修改过的Xilinx官方XDMA驱动和QT上位机一起使用,所以Vivado工程必须做到以下几点:
1:XDMA中的AXI4_Lite基地址必须设为0x44A00000,这是XDMA驱动修改的规定,感兴趣的可以去看驱动源码,配置如下;
在这里插入图片描述
2:MIG的DDR基地址必须从0x00000000开始,这是QT上位机代码的规定,感兴趣的可以去看QT源码,配置如下;
在这里插入图片描述

PCIE上板调试注意事项

1:必须先安装本博提供的XDMA驱动,详情请参考第4章节的《XDMA驱动及其安装》,Windows版本驱动只需安装一次;
2:Windows版本下载FPGA工程bit后需要重启电脑,电脑才能识别到XDMA驱动;程序固化后也需要重启电脑;Linux版本每次载FPGA工程bit后都需要重启电脑,都需要安装XDMA驱动;
3:FPGA板卡插在主机上后一般不需要额外供电,如果你的板子元器件较多功耗较大,则需要额外供电,详情咨询开发板厂家,当然,找我买板子的客户可以直接问我;
4:PCIE调试需要电脑主机,但笔记本电脑理论上也可以外接出来PCIE,详情百度自行搜索一下,电脑主机PCIE插槽不方便操作时可以使用延长线接出来,某宝有卖;

5、vivado工程源码1详解–>Kintex7-35T版本

开发板FPGA型号:Xilinx–>Kintex7–35T–xc7k325tffg676-2;
FPGA开发环境:Vivado2019.1;
QT开发环境:VS2015 + Qt 5.12.10;
输入:电脑主机实时视频,分辨率1280x720@60Hz;
输出:万兆UDP网络视频,分辨率1280x720@60Hz;
PC端到FDMA传输方案:PCIE传输;
图像缓存方案:FDMA图像缓存+DDR3颗粒;
PCIE底层方案:Xilinx XDMA;
PCIE详情:PCIE2.0版本,X8,5GT/s单lane线速率;
万兆以太网物理层:Xilinx官方10G Ethernet Subsystem方案
万兆以太网协议层:万兆UDP协议栈;
实现功能:FPGA实现PCIE采集电脑端视频转SFP光口万兆UDP输出;
工程作用:此工程目的是让读者掌握FPGA实现PCIE采集电脑端视频转SFP光口万兆UDP输出的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第4章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

6、vivado工程源码2详解–>Zynq7100版本

开发板FPGA型号:Xilinx–>Zynq7100–xc7z100ffg900-2;
FPGA开发环境:Vivado2019.1;
QT开发环境:VS2015 + Qt 5.12.10;
输入:电脑主机实时视频,分辨率1280x720@60Hz;
输出:万兆UDP网络视频,分辨率1280x720@60Hz;
PC端到FDMA传输方案:PCIE传输;
图像缓存方案:FDMA图像缓存+DDR3颗粒;
PCIE底层方案:Xilinx XDMA;
PCIE详情:PCIE2.0版本,X8,5GT/s单lane线速率;
万兆以太网物理层:Xilinx官方10G Ethernet Subsystem方案
万兆以太网协议层:万兆UDP协议栈;
实现功能:FPGA实现PCIE采集电脑端视频转SFP光口万兆UDP输出;
工程作用:此工程目的是让读者掌握FPGA实现PCIE采集电脑端视频转SFP光口万兆UDP输出的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第4章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

7、工程移植说明

vivado版本不一致处理

1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件–>另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;
在这里插入图片描述
3:如果你的vivado版本高于本工程vivado版本,解决如下:
在这里插入图片描述
打开工程后会发现IP都被锁住了,如下:
在这里插入图片描述
此时需要升级IP,操作如下:
在这里插入图片描述
在这里插入图片描述

FPGA型号不一致处理

如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;

其他注意事项

1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;

8、上板调试验证

准备工作

需要准备的器材如下:
FPGA开发板,没有开发板可以找本博提供;
带PCIE卡槽的电脑主机;
网线;
我的开发板了连接如下:
在这里插入图片描述

电脑端IP地址配置

电脑端IP地址需要修改为和代码里的目的地址一样,如下:
在这里插入图片描述

QT上位机配置

打开QT上位机配置如下,然后可以采集显示视频;
在这里插入图片描述

电脑端视频通过PCIE到FPGA端转UDP网络视频输出效果演示

电脑端视频通过PCIE到FPGA端转UDP网络视频输出效果如下:

XDMA-UDP

9、福利:工程代码的获取

福利:工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
网盘资料如下:
在这里插入图片描述
此外,有很多朋友给本博主提了很多意见和建议,希望能丰富服务内容和选项,因为不同朋友的需求不一样,所以本博主还提供以下服务:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/886031.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用 unicorn 和 capstone 库来模拟 ARM Thumb 指令的执行(一)

import binascii import unicorn import capstonedef printArm32Regs(mu):for i in range(66,78):print("R%d,value:%x"%(i-66,mu.reg_read(i)))def testhumb():CODE b\x1C\x00\x0A\x46\x1E\x00"""MOV R3, R0 的机器码:0x1C 0x00&#xf…

git重置的四种类型(Git Reset)

git区域概念 1.工作区:IDEA中红色显示文件为工作区中的文件 (还未使用git add命令加入暂存区) 2.暂存区:IDEA中绿色(本次还未提交的新增的文件显示为绿色)或者蓝色(本次修改的之前版本提交的文件但本次还未提交的文件显示为蓝色)显示的文件为暂存区中的文件(使用了…

第三十一天|贪心算法| 56. 合并区间,738.单调递增的数字 , 968.监控二叉树

目录 56. 合并区间 方法1:fff 看方法2:fff优化版 方法3: 738.单调递增的数字 968.监控二叉树(贪心二叉树) 56. 合并区间 判断重叠区间问题,与452和435是一个套路 方法1:fff 看方法2&am…

LeetCode 热题100(八)【二叉树】(3)

目录 8.11二叉树展开为链表(中等) 8.12从前序与中序遍历序列构造二叉树(中等) 8.13路径总和III(中等) 8.14二叉树的最近公共祖先(中等) 8.15二叉树中的最大路径和(困…

AutoSAR CP DoIP规范导读

主要功能和用途 诊断通信协议实现 遵循标准:遵循ISO 13400 - 2标准,实现了诊断通信在IP网络上的传输协议和网络层服务,包括数据封装、传输、路由等功能。 多种消息支持 车辆识别与公告:能够进行车辆识别请求和响应,…

Simulink中Matlab function使用全局变量

目录 一. 引言二. 普通Matlab function使用全局变量三. Simulink中的Matlab function使用全局变量四. 如何利用Matlab function的全局变量施加随机噪声 一. 引言 最近发现了之前仿真中的一个问题,记录一下备忘。 Matlab function中有时候需要用到全局变量&#xf…

屏幕缩放后截屏图片尺寸数字偏大导致前端DOM尺寸设置失真问题

如果显示器的尺寸缩放,而不是100%的话,利用截屏软件截取屏幕中的区域,截取时读取到的区域尺寸,就会失真;如果使用这个尺寸去设置网页中的DOM,则Dom的尺寸也会跟着失真。 比如, 如果使用失真…

蓝桥杯每日真题 - 第7天

题目:(爬山) 题目描述(X届 C&C B组X题) 解题思路: 前缀和构造:为了高效地计算子数组的和,我们可以先构造前缀和数组 a,其中 a[i] 表示从第 1 个元素到第 i 个元素的…

给阿里云OSS绑定域名并启用SSL

为什么要这么做? 问题描述: 当用户通过 OSS 域名访问文件时,OSS 会在响应头中增加 Content-Disposition: attachment 和 x-oss-force-download: true,导致文件被强制下载而不是预览。这个问题特别影响在 2022/10/09 之后新开通 OS…

电脑浏览器打不开网页怎么办 浏览器无法访问网页解决方法

我们在使用电脑的时候,使用浏览器是经常的,很多用户在点开浏览器时,却遇到浏览器无法访问网页的情况。那么电脑浏览器打不开网页是什么原因呢?今天小编就给大家分享几个常见的原因和具体的解决方法,希望能对大家有所帮…

(干货)Jenkins使用kubernetes插件连接k8s的认证方式

#Kubernetes插件简介 Kubernetes 插件的目的是能够使用 Kubernetes 配合,实现动态配置 Jenkins 代理(使用 Kubernetes 调度机制来优化负载),在执行 Jenkins Job 构建时,Jenkins Master 会在 kubernetes 中创建一个 Sla…

C语言 | Leetcode C语言题解之第556题下一个更大元素III

题目&#xff1a; 题解&#xff1a; int nextGreaterElement(int n){int x n, cnt 1;for (; x > 10 && x / 10 % 10 > x % 10; x / 10) {cnt;}x / 10;if (x 0) {return -1;}int targetDigit x % 10;int x2 n, cnt2 0;for (; x2 % 10 < targetDigit; x2…

TDesign了解及使用

文章目录 1、概述2、快速开始2.1使用 npm 安装2.2通过 浏览器引入 安装2.3、使用 3、简单案例3.1 路由创建3.2、 页面创建3.3、 Table组件3.4、序号展示3.5、 图片展示及预览3.6、 性别字段处理 1、概述 TDesign 是腾讯推出的设计系统&#xff0c;旨在提供一致的设计语言和视觉…

计算机网络(11)和流量控制补充

这一篇对数据链路层中的和流量控制进行详细学习 流量控制&#xff08;Flow Control&#xff09;是计算机网络中确保数据流平稳传输的技术&#xff0c;旨在防止数据发送方发送过多数据&#xff0c;导致接收方的缓冲区溢出&#xff0c;进而造成数据丢失或传输失败。流量控制通常…

可扩展架构与分层架构

可扩展架构 1 概述 软件系统与硬件/建筑系统最大的区别就是可以迭代升级和扩展&#xff0c;一个硬件生产出来后就不会进行改变&#xff0c;除非拿去售后维修&#xff0c;一个建筑完工后也不会改变其整体的结构&#xff0c;除非被破坏后进行修复和重铸 可以发现如果硬件/建筑不…

MyBatis从入门到进阶

目录 MyBatis入门1、创建项目、数据准备2、数据库配置3、编写持久层代码单元测试打印日志 基本操作查询数据插入数据删除数据更新数据 MyBatis - xml插入数据更新数据删除数据查询数据#{}与${}SQL注入排序like查询 MyBatis进阶if标签trim标签where标签set标签foreach标签sql标签…

TensorFlow 2.0 环境配置

官方文档&#xff1a;CUDA Installation Guide for Windows 官方文档有坑&#xff0c;windows的安装指南直接复制了linux的指南内容&#xff1a;忽略这些离谱的信息即可。 可以从官方文档知悉&#xff0c;cuda依赖特定版本的C编译器。但是我懒得为了一个编译器就下载整个visua…

浅谈:基于三维场景的视频融合方法

视频融合技术的出现可以追溯到 1996 年 , Paul Debevec等 提出了与视点相关的纹理混合方法 。 也就是说 &#xff0c; 现实的漫游效果不是从摄像机的角度来看 &#xff0c; 但其仍然存在很多困难 。基于三维场景的视频融合 &#xff0c; 因其直观等特效在视频监控等相关领域有着…

亚马逊评论爬虫+数据分析

爬取评论 做分析首先得有数据&#xff0c;数据是核心&#xff0c;而且要准确&#xff01; 1、爬虫必要步骤&#xff0c;选好框架 2、开发所需数据 3、最后测试流程 这里我所选框架是seleniumrequest&#xff0c;很多人觉得selenium慢&#xff0c;确实不快&#xff0c;仅针对此…

RK3588 C++ 多线程运行

RK3588 C 多线程 实际运行解决OpenCV问题&#xff1a; 1. OpenCV 安装 sudo apt-get update sudo apt-get install libopencv-dev2. 检查 OpenCV 安装路径 find / -name OpenCVConfig.cmake3. 设置 OpenCV_DIR 环境变量 export OpenCV_DIR/usr/lib/aarch64-linux-gnu/cmake/op…