除了 MySQL,这些数据库你都认识么?

什么是数据库?

这个问题相信对学编程的朋友们来说过于简单了,大家想必都是增删改查的好手。

但如果让你说出 10 种不同类型的数据库,阁下该如何应对?

这篇文章,是对数据库技术的一个小科普,希望能帮大家了解到更多元化的数据库,便于拓宽学习思路和项目的技术选型。

关系型数据库

首先是我们接触最多的、也是入门后端必学的 关系型数据库 。

在关系型数据库中,数据以  的形式进行组织和存储,每个表就像一个 Excel 表格,包含多个  和多个  。

就比如我们经典的学生管理系统,把学生信息存储到关系型数据库中,结构大概是这样的:

学号学生姓名所属班级号
1小李1
2小鱼2
3小皮3

上述学生表格中,每一行代表一个学生的信息,每一列代表学生的一个属性。我们可以使用结构化查询语言 SQL 来对关系型数据库表的数据进行灵活地查询、选择、过滤等。

而关系型数据库最大的特点,就是表和表之间可以 存在关系 。比如学生管理系统中还可以有班级表,结构如下:

班号班级名称
1快乐班
2泰酷班
3躺平班

那如果我想知道某个学生所属的班级信息,只需要在查询时将学生表的 所属班级号 和班级表的 班号 进行关联,而不用把所有表格的列存储在一起,非常灵活。

通过 SQL 可以连接查询多张表,得到下面的查询结果:

学号学生姓名所属班级号班级名称
1小李1快乐班
2小鱼2泰酷班
3小皮3躺平班

除了查询灵活、数据表间存在关系外,关系型数据库还具有很多其他的优点。

比较重要的是 数据一致性 ,关系型数据库遵循 ACID 原则(原子性、一致性、隔离性和持久性),支持事务,可以保证多个操作同时进行时,数据的状态保持一致。比如 A 给 B 转账,A 扣钱 的同时 B 也会加钱,不会出现 A 扣了钱 B 却没收到钱的情况。

兼顾查询的灵活和写入的准确性,使得关系型数据库几乎可以被应用于任何项目中!比如 CRM(客户关系管理)和 HRM(人力资源管理)等各类管理系统、数据分析系统、金融银行系统等。

比较经典的关系型数据库产品有 MySQL、Oracle、PostgreSQL、Microsoft SQL Server 等。其中,MySQL 由于开源又易学,已经成为后端开发同学必学的数据库技术。

关系型数据库的底层核心实现是 基于关系模型的数学理论 ,最常见的实现方式是使用 B+ 树来存储索引结构,基于其平衡性,能够在存储大量数据时保持高效的查询性能,并且兼顾增删改操作的性能。

图片

对于大多数项目,用 MySQL 等关系型数据库来存储数据就足够了。但关系型数据库不是银弹!在某些场景下,比如要存储的数据间没有关系时,它并不是最佳的选择。

举个例子,当我们要写一篇文章,没有必要把数据存储到 Excel 表格里,可能直接将单篇文本放到 Word 里会更方便阅读和修改。

这个时候,我们就需要与之互补的 非关系型数据库

非关系型数据库

非关系型数据库又叫 NoSQL。最简单的理解方式:关系型数据库适用于存储相互之间 存在关系的数据表 ,那么非关系型数据库适用于关系不强的、结构相对灵活的、需要被快速访问的数据,比如字符串、JSON 等。

实际项目开发中,最常用的非关系型数据库当属 KV 数据库。

KV 即 Key-Value,数据是以 键值对 的方式存储在数据库中的。可以理解为一个 HashMap,数据库中存储的每个键都 唯一对应 一个值。键和值都可以是任意类型的数据,例如字符串、数字、数组等,非常灵活。

比如存储每位用户的个人信息,结构大概是这样的:

图片

由于 KV 存储的结构简单清晰,我们能够很轻松地根据某个键查找出对应的值,无论是读写数据性能都非常高。

此外,KV 数据库还具备良好的可扩展性,由于数据间不存在直接关联,我们可以把键值对放到多个机器上存储,通过数据分片、负载均衡等策略来支持海量数据的高并发访问。

由于高性能和高可扩展性,KV 数据库被广泛应用于缓存、分布式会话、分布式锁、实时统计等场景。

最经典的 KV 数据库当属 Redis 了,它是开源的、基于内存的、高性能的数据库,不仅支持丰富的数据类型和功能,还有持久化等重要特性,也是后端同学必学的技术。其他的常用 KV 数据库有 LevelDB、RocksDB、Apache Cassandra 等。

KV 数据库的底层实现比较灵活,常见的实现方式是使用哈希表来存储键值对。不同类型的值对应的实现方式也不同,比如 Redis 的字符串存储采用简单动态字符串(SDS)实现。

图片

解决特定问题的数据库

相信很多同学对数据库的印象就停留在 MySQL 和 Redis。的确,以上两类数据库几乎已经可以解决所有问题!

但是,未必是最适合的。

就像你完全可以用电脑自带的记事本软件来查看和编辑 HTML 网页文件,但是往往会选择一个更专业的开发工具来替代它。

数据库也是一样,除了传统的关系和非关系型数据库之外,还有很多用于解决特定问题的数据库。它们往往针对特定的数据结构和应用场景进行了专门的优化和设计,能够提供更高效快捷的数据查询和存储,满足特定领域的需求。

比如下面 8 种数据库:

搜索引擎数据库

顾名思义,搜索引擎数据库是为了实现搜索引擎功能的数据库。

它适用于存储和管理大量的文本内容数据,并提供更快速、准确、灵活的全文检索功能。

比如想要让用户更轻松地在你的博客内搜索文章,就可以使用搜索引擎数据库。

为什么它能做到更快更灵活的搜索呢?这是因为在搜索引擎数据库中,数据一般是以 倒排索引 的方式存储的。

倒排索引和传统的关系表有什么区别呢?

以存储博客文档为例,传统的关系型数据库存储结构是:

文档 id文档内容
1感谢关注鱼皮
2鱼皮是一名程序员
3感谢关注屑老板不破产

我们能够根据 id 来查找到对应的单篇文档,也可以通过搜索精确的关键词,来查找到多篇文档。

比如搜索 “鱼皮”,能搜出文档 1、2。

但是,如果你搜索 “鱼皮程序员”,是无法得到搜索结果的,因为没有任何一个文档的内容,完全包含 “鱼皮程序员” 这个词(文档内容 2 只有 “鱼皮”、“程序员” 这两个词)。

而在搜索引擎数据库中,首先会将文档内容按照单词进行分割,也就是 分词 。然后再构建单词到文档 id 的映射,示例结构如下:

单词文档 id
感谢1, 3
关注1, 3
鱼皮1, 2
程序员2

有了上述的倒排索引,当用户搜索 “鱼皮程序员” 时,搜索引擎数据库会先对搜索词进行分词,得到 “鱼皮” 和 “程序员”,然后根据这两个词汇就能找到文档 id 1、2 了。不用再去遍历表内所有的数据,实现了更灵活、快速的 模糊搜索 。

此外,搜索引擎数据库还支持 相关性排序 ,能够根据用户的搜索词对所有搜索结果进行打分,把最接近的文档排到最上面。

主流的搜索引擎数据库技术有 Elasticsearch、Apache Solr、Apache Lucene 等,一般更建议大家学习 Elasticsearch,这玩意更新迭代地老快了。

文档数据库

顾名思义,文档数据库适用于存储和管理 半结构化的 文档数据,比如存储 JSON 格式。

相比于关系型数据库中明确定义的表格行列,文档数据库的数据结构是类似于文档的层次化结构,每个文档都是独立的,可以包含多个不同类型和格式的数据。

比如存储博客文章,示例结构如下:

文档 ID文档数据
1{"_id": 1, "title": "文章标题1", "content": "这是文章1的内容"}
2{"_id": 2, "title": "文章标题2", "author": "程序员鱼皮"}

当我们要给某个文档新增一个字段时,不需要像关系型数据库一样改变表结构,非常灵活!

除了灵活之外,文档数据库也有很高的可扩展性,适用于内容管理系统(比如博客)、文档协同编辑系统等。

个人比较推荐学习的文档数据库是 MongoDB,入门难度极低,对前端同学也很友好。当然,Couchbase 也是不错的。

时序数据库

时序数据库是一种专门用于高效存储和处理 时间序列 的数据库系统。

时间序列是指以时间作为主要维度的数据序列,即每个数据单元都包含 时间戳 。

举个例子,在实时温度监测系统中,我们需要 每分钟连续 收集并观察当前的温度,数据结构示例如下:

时间戳设备ID温度值
2023-07-01 10:00Device00125.5
2023-07-01 10:01Device00125.7
2023-07-01 10:02Device00125.8
2023-07-01 10:03Device00126.2
2023-07-01 10:04Device00126.5
2023-07-01 10:05Device00126.3

有了这些数据,我们就能够按照时间范围进行高效查询、聚合分析、数据可视化。

因此,时序数据库非常适用于物联网(比如传感器数据)、日志监控、金融交易数据分析等场景。

主流的时序数据库技术有 InfluxDB、TimescaleDB 等。一般情况下,建议将时序数据库配合 Grafana 监控看板一起使用,实现数据存储 + 快速可视化。

图片

不同时序数据库底层的存储方式也不同,我们可以简单理解为,时序数据库会根据 时间 字段构建索引,查询时通过索引去定位实际数据。比如 InfluxDB 使用 TSM(Time-Structured Merge Tree)作为存储引擎,底层使用 B+ 树来存储时间索引。

向量数据库

向量数据库是专门用于存储和处理 高维向量数据 的数据库系统。

什么是向量?每个向量可以表示一个实体,并且包含多个维度的数值。

举个例子,在人脸识别系统中,我们可以通过人脸的 特征 来判断是否为熟人。每张人脸图像,都对应一个向量;每个人脸向量有可能包含成百上千个特征,比如鼻子大小、眼睛大小等,每个特征就是一个维度。

对应的数据结构示例如下:

人脸 ID人脸特征向量
1[0.1, 0.2, 0.3, ..., 0.5]
2[0.1, 0.3, 0.2, ..., 0.4]

在上述表格中,人脸特征向量是一个浮点数数组。数组的每个下标就表示一个特征(维度),比如下标 0 的数值表示鼻子的大小,下标 1 的数值表示眼睛大小,以此类推。。。

我们只需要对比向量,就能够判断出人脸的相似度。

向量数据库能够高效存储多维向量数据、计算向量的相似度、并实现各种不同算法的相似性搜索,适用于图像识别、特征提取和匹配、推荐系统等场景。值得一提的是,AI 技术的发展也带来了一波向量数据库技术的热潮,可以利用向量数据库存储投喂给 AI 的训练 Embeddings 数据。

主流的向量数据库技术有 Milvus、Pinecone、Faiss 等,有些数据库(比如 PostgreSQL)可能也支持存储向量类型的字段。

关于向量数据库的底层实现,还是比较复杂的。类似于上面提到的时序数据库,向量数据库的实现关键也是索引的设计。常见的向量索引结构有倒排索引、KD 树、球树等,可以理解为对相似的向量数据进行了分组和编码,从而实现更快速地检索匹配相似向量。此外,向量数据库往往也会采用并行计算来加速处理。

空间数据库

空间数据库是专门用于存储和处理 地理空间数据 的数据库系统。

地理空间数据是指基于地理 坐标系 的 几何对象 ,比如某个物体所处的经纬度或三维坐标(点)、某个物体的轮廓(线)、某个物体的表面(面)等。

举个例子,假如你想存储自己房间内每个物体的位置信息,对应的数据结构可能是:

物体 IDX 坐标Y 坐标Z 坐标
12.53.01.8
21.04.22.3
33.72.11.5

使用空间数据库,能够高效地存储、查询和分析空间数据,比如计算两个空间是否相交、对路径进行规划、可视化地理空间等。

空间数据库不仅是地理信息系统(GIS)的核心组件,还能用于实现位置导航、城市路面规划等场景。

对于具体的空间数据库技术,我了解得不多,只知道可以用 PostGIS 插件来为 PostgreSQL 支持空间数据管理能力,朋友们可以帮忙补充下。

图片

至于空间数据库的底层实现,最关键的部分依然是索引。常见的 空间索引 结构有 R 树、Quadtree 等,这些结构可以对空间数据进行划分、聚合和编码,从而加速空间范围的查询处理。此外,空间数据库涉及大量的空间分析算法,比如最近邻查询、空间关系查询等。时间有限,不做展开说明了。

图形数据库

图形数据库是专门用于存储和处理 图形结构数据 的数据库系统。

注意,这里的图形可不是三角形、长方形,而是指 由节点和边构成 的图形结构。

比如我们要存储一个朋友圈关系网(即 FoF:朋友的朋友),对应的图形可能是:

图片

上图中,每个用户可以表示为一个节点,用户之间的好友关系可以表示为边。

在图形数据库中,需要 2 个表格来存储。

节点信息表:

节点 id节点名
1小王
2小李
3小刘

边信息表:

边 id边类型起始节点结束节点
1好友12
2好友13

通过存储这些节点和边的信息,图形数据库就能实现快速 查询及分析 朋友圈网中的用户关系,并且挖掘出用户的社交情况、和其他用户的隐藏关系等。

由此,图形数据库非常适于构建社交网络关系图谱、推荐系统、知识图谱等。

比较主流的图形数据库有 Neo4j、TigerGraph 等,都支持复杂的图形操作和算法、以及分布式扩展,能够通过并行计算加速图形处理。

图形数据库的核心实现相信学过算法的朋友们并不陌生,主要是用了类似邻接表、邻接矩阵等方式实现节点和边数据的存储,并且通过构建图形索引进行加速。

列存数据库

这是一种 非常主流 的数据库!区别于传统的行式数据库,列存数据库以列作为基本的存储单位,把每列的数据存储在一起。

拿鱼皮公司每天的收入来举个例子,传统的行式(关系型)数据库是这么存储的:

日期销售额成本利润
2022-01-01500600-100
2022-01-02280450-170
2022-01-03290480-190

而在列存数据库中,底层大概是这么存储的,相当于对矩阵做了一次转置:

日期2022-01-012022-01-022022-01-03
销售额500280290
成本600450480
利润-100-170-190

这样一来,如果我们要统计这几天公司的总利润,不需要依次读取每一行的数据,直接 读取所需 的利润那一列进行计算即可,从而提高了数据分析和聚合操作的效率。

此外,从计算机底层来分析,把相同类型的数据在同一列中连续存储,可以实现更好的数据压缩效果、节约空间。

因此,列存数据库适用于实时数据分析、OLAP、大规模数据仓库等场景。

比较主流的列存数据库技术有 Apache HBase、ClickHouse、Druid 等,都是大数据方向同学的必修课。

图片

ClickHouse 官方演示

多模数据库

最后要讲的数据库也最特别,区别于上面所有存储单一数据模型的数据库,多模数据库能够 同时存储处理多种不同类型的数据 ,比如关系型数据、文档数据、图形数据等,非常灵活。

就拿大家学编程时最常做的电商系统来举例。如果没有多模数据库,你要用关系型数据库来存储商品简略信息(比如商品名称、价格),要用文档数据库来存储可能长达几十页的商品详情,要用图数据库来存储商品推荐关系。每次看数据库信息时,要分别到三个数据库中查看。

如果使用多模数据库,可以直接在同一个数据库里统一存储和管理不同类型的数据,非常方便。

此外,多模数据库还支持事务,能够更轻松地实现数据的一致性和完整性,不需要手动实现跨库事务、跨库数据同步等等。

比较常用的多模态数据库技术有 ArangoDB、OrientDB 等,不过一般情况下,我们在开发中也很少会用到这种数据库,感兴趣的话再学习即可。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/88282.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

通俗易懂了解大语言模型LLM发展历程

1.大语言模型研究路程 NLP的发展阶段大致可以分为以下几个阶段: 词向量词嵌入embedding句向量和全文向量理解上下文超大模型与模型统一 1.1词向量 将自然语言的词使用向量表示,一般构造词语字典,然后使用one-hot表示。   例如2个单词&…

STL算术生成和集合算法

目录 算术生成算法accumulate 算术生成算法file 常用集合算法 常用集合算法 常用集合算法set_difference 算术生成算法accumulate 算术生成算法属于小型算法&#xff0c;使用时包含的头文件为 include <numeric> accumulate(iterator beg, iterator end, value); …

初识java

目录 1. cmd(命令提示符) 1. 什么是cmd 2. cmd常用命令 1. 打开cmd 2.常用命令 2. 什么是java 1. 为什么学Java? 2. JDK的下载和安装 3.第一个java程序(重点) 1.使用记事本编写程序 2.翻译文件(编译) 3.运行文件 4.配置环境变量 1.为什么要配置环境变量 2.配置…

MySQL学习笔记1

任务背景&#xff1a; 将原来的数据库从原来的MySQL-5.5 升级到现在的MySQL-5.7&#xff0c;并保证数据完整。 1&#xff09;不同版本MySQL的安装&#xff1b;yum glibc、源码安装&#xff0c;是企业100%要用到的。 2&#xff09;MySQL数据库版本升级&#xff1b;&#xff08…

AndroidStudio无法查看Compose重组次数?

印象中是一开始使用AndroidStudio LayoutInspector想查看Compose重组次数的时候&#xff0c;一开始折腾了下后来忘了这茬事了&#xff0c;最近&#x1fa9c;到期了&#xff0c;家里又换了台新的mac mini又看到这个问题&#x1f60a;&#xff0c;就想着给大家整理了一下解决方法…

互联网医院牌照|互联网医院牌照审批流程和材料

随着科技的不断进步和社会的发展&#xff0c;互联网医院已经成为了当前的热点。而互联网医院的准入门槛自然也就越来越高。如果您计划成立一个互联网医院&#xff0c;您需要了解申请互联网医院牌照所需要注意的方面以及申请的流程。 一、资质申请前的准备 1、立项阶段准备 在立…

项目开发过程中,成员提离职,怎么办?

之前写过一篇《如何应对核心员工提离职》反响特别好&#xff0c;今天做个延展篇&#xff0c;在项目过程中&#xff0c;员工突然提离职&#xff0c;我们有什么办法让项目按时按质的上线。 项目做多了&#xff0c;总会碰到这种情况。这里给大家介绍一个解决项目问题的分析方法&a…

一文教你学会ArcGIS Pro地图设计与制图系列全流程(2)

ArcGIS Pro做的成果图及系列文章目录&#xff1a; 系列文章全集&#xff1a; 《一文教你学会ArcGIS Pro地图设计与制图系列全流程&#xff08;1&#xff09;》《一文教你学会ArcGIS Pro地图设计与制图系列全流程&#xff08;2&#xff09;》《一文教你学会ArcGIS Pro地图设计与…

Apache Doris 行列转换可以这样玩

行列转换在做报表分析时还是经常会遇到的&#xff0c;今天就说一下如何实现行列转换吧。 行列转换就是如下图所示两种展示形式的互相转换 1. 行转列 我们来看一个简单的例子&#xff0c;我们要把下面这个表的数据&#xff0c;转换成图二的样式 image-20230914151818953.png …

负载均衡器监控

什么是负载均衡器 负载均衡建立在现有网络结构之上&#xff0c;它提供了一种廉价有效透明的方法扩展网络设备和服务器的带宽、增加吞吐量、加强网络数据处理能力、提高网络的灵活性和可用性。其意思就是分摊到多个操作单元上进行执行&#xff0c;例如Web服务器、FTP服务器、企…

[React] 自定义hooks设计模式

文章目录 1.自定义hooks设计1.1 自定义hooks1.2 设计一个自定义hooks1.3 自定义hooks的驱动条件1.4 自定义hooks的通用模式1.5 自定义hooks的条件限定 1.自定义hooks设计 react-hooks是react16.8以后&#xff0c;react新增的钩子API&#xff0c;目的是增加代码的可复用性&…

小程序为什么必须使用SSL证书?

随着互联网技术的发展&#xff0c;越来越多的网站和应用程序开始使用SSL证书来保护用户数据的安全。微信小程序作为一款广受欢迎的应用程序&#xff0c;也必须使用SSL证书来确保用户数据的安全。 首先&#xff0c;使用SSL证书可以保护用户数据的安全。SSL证书是一种数字证书&am…

玩转Mysql系列 - 第22篇:mysql索引原理详解

这是Mysql系列第22篇。 背景 使用mysql最多的就是查询&#xff0c;我们迫切的希望mysql能查询的更快一些&#xff0c;我们经常用到的查询有&#xff1a; 按照id查询唯一一条记录 按照某些个字段查询对应的记录 查找某个范围的所有记录&#xff08;between and&#xff09; …

5+单细胞+脂质代谢+预后模型+实验

今天给同学们分享一篇5单细胞脂质代谢预后模型实验的生信文章“Single-cell transcriptome analysis reveals the metabolic changes and the prognostic value of malignant hepatocyte subpopulations and predict new therapeutic agents for hepatocellular carcinoma”&am…

uniapp ui安装 阿里图标库使用 报错 Assignment to constant variable.

安装 ui uni-app官网 (dcloud.net.cn) &#xff08;一&#xff09;安装 pages.js配置 安装 sassnpm i sass -D 或 yarn add sass -D 安装 sass-loader npm i sass-loader10.1.1 -D 或 yarn add sass-loader10.1.1 -D安装 uni-uinpm i dcloudio/uni-ui 或 yarn a…

【开发篇】八、SpringBoot整合MongoBD

文章目录 1、整合2、简单示例3、一点思考4、MongoDB的安装5、MongoDB的CRUD语法 1、整合 导入MongoBD的起步依赖&#xff1a;&#xff08;这个starter背后是MongoDB的驱动和其他依赖&#xff0c;在这儿也可以看出命名的规律&#xff0c;redis的就是spring-boot-starter-data-r…

(Mysql高级语句(进阶查询语句+数据库函数+连接查询))

Mysql高级语句&#xff08;进阶查询语句MySQL数据库函数连接查询&#xff09; 一、mysql查询语句1.1、 select ----显示表格中一个或数个字段的所有数据记录1.2、 distinct ----不显示重复的数据记录1.3、where ----有条件查询1.4、 and or ----且 或1.5 、in----显示已知的值的…

算法竞赛备赛之动态规划训练提升,DP基础掌握

1.背包问题 1.1.01背包问题 01背包问题是在M件物品中选择若干件放在空间为W的背包中&#xff0c;每件物品的体积为W1&#xff0c;W2至Wn&#xff0c;价值为P1&#xff0c;P2至Pn&#xff0c;01背包的约束条件是给定几种物品&#xff0c;每种物品有且只有一个&#xff0c;并且…

ChatGPT重磅升级:可以看图、听声音、说话啦!

美东时间9月25日&#xff0c;OpenAI在官网宣布&#xff0c;对ChatGPT进行重磅升级实现看图、听声音、输出语音内容三大功能。 早在今年3月OpenAI发布GPT-4模型时&#xff0c;就展示过看图的功能&#xff0c;但由于安全、功能不完善等原因一直没有开放。现在不仅开放了看图&…

TensorFlow入门(四、数据流向机制)

session与"图"工作过程中存在的两种数据的流向机制,即:注入机制和取回机制 注入机制(feed):即通过占位符向模式中传入数据 取回机制(fetch):指在执行计算图时&#xff0c;可以同时获取多个操作节点的计算结果 实例代码如下: import tensorflow.compat.v1 as tftf…