C++ —— 关于继承(inheritance)

目录

1. 继承的概念及定义

1.1 继承的概念

1.2 继承的定义格式

1.3 继承基类成员访问方式的变化

1.4 类模板的继承

2.基类与派生类的转换

3. 继承中的作用域

3.1 隐藏规则

4. 派⽣类的默认成员函数

4.1 4个常见默认成员函数

4.2 实现⼀个不能被继承的类

5. 继承与友元

6.继承与静态成员

 7. 多继承及其菱形继承问题

7.1 继承模型

7.2 虚继承(virtual)

 7.3 多继承中指针偏移问题

 8. 继承和组合


1. 继承的概念及定义

1.1 继承的概念


继承(inheritance)机制是⾯向对象程序设计使代码可以复⽤的最重要的⼿段,它允许我们在保持原有类特性的基础上进⾏扩展,增加⽅法(成员函数)属性(成员变量),这样产⽣新的类,叫做子类

   

继承呈现了⾯向对象程序设计的层次结构,体现了由简单到复杂的认知过程。以前我们接触的函数层次的复⽤,继承是类设计层次的复⽤

#include<iostream>using namespace std;
//基类
class Person
{
public:// 进⼊校园/图书馆/实验室刷⼆维码等⾝份认证 void identity(){cout << "void identity()" << _name << endl;}
protected:string _name = "张三"; // 姓名 string _address; // 地址 string _tel; // 电话 int _age = 18; // 年龄 
};
//派生类
class Student : public Person
{
public:// 学习 void study(){// ...}
protected:int _stuid; // 学号 
};
class Teacher : public Person
{
public:// 授课 void teaching(){//...}
protected:string title; // 职称 
};int main()
{Student s;Teacher t;//继承基类的公有函数与保护成员s.identity();t.identity();return 0;
}


1.2 继承的定义格式


Person是基类,也称作⽗类   Student是派⽣类,也称作⼦类 

 派⽣类用公有的方式继承了基类


1.3 继承基类成员访问方式的变化

1. 基类private成员在派⽣类中⽆论以什么⽅式继承都是不可⻅的。这⾥的不可⻅是基类的私有成员还是被继承到了派⽣类对象中,但是语法上限制派⽣类对象不管在类⾥⾯还是类外⾯都不能去访问它

    
2. 基类private成员在派⽣类中不能被访问,如果基类成员不想在类外直接被访问,但需要在派⽣类中能访问,就定义为protected。可以看出保护成员限定符是因继承才出现的

    
3. 基类的其他成员在派⽣类的访问⽅式 == 取权限小的那个,Min(成员在基类的访问限定符,继承⽅式),

public >protected >private

    
4. 如果不写访问限定符的话,使⽤关键字class时默认的继承⽅式是private,使⽤struct时默认的继承⽅式是public,不过最好显⽰的写出继承⽅式

    
5. 在实际运⽤中⼀般使⽤都是public继承,⼏乎很少使⽤protetced/private继承,也不提倡使⽤protetced/private继承,因为protetced/private继承下来的成员都只能在派⽣类的类⾥⾯使⽤,实际中扩展维护性不强

派生类不可以访问基类中的私有成员,但是可以使用基类的公有成员函数调用访问私有成员

 

// 实例演⽰三种继承关系下基类成员的各类型成员访问关系的变化
class Person
{
public :void Print (){cout<<_name <<endl;}
protected :string _name ; // 姓名
private :int _age ;// 年龄
};//class Student : protected Person//class Student : private Person
class Student : public Person
{
protected :int _stunum ; // 学号
};


1.4 类模板的继承

使用类模版模拟实现一个栈,可以使用vector/list/deque来当做底层容器,核心就是类模版的继承

//Stack使用公有的方式继承了vector实例化出来的
class Stack : public std::vector<T>
//Stack使用公有的方式继承了list实例化出来的
class Stack : public std::list<T>
//Stack使用公有的方式继承了deque实例化出来的
class Stack : public std::deque<T>

基类是类模板时,需要指定⼀下类域, 否则编译报错:error C3861: “push_back”: 找不到标识符 ,因为stack<int>实例化时,也实例化vector<int>了 但是模版是按需实例化 push_back等成员函数未实例化,所以找不到 

template<class T>
//Stack使用公有的方式继承了vector实例化出来的
class Stack : public std::vector<T>//class Stack : public std::list<T>
//class Stack : public std::deque<T>
{
public:// 基类是类模板时,需要指定⼀下类域, // 否则编译报错:error C3861: “push_back”: 找不到标识符 // 因为stack<int>实例化时,也实例化vector<int>了 // 但是模版是按需实例化,push_back等成员函数未实例化,所以找不到 void push(const T& x){vector<T>::push_back(x);}void pop(){vector<T>::pop_back();}const T& top(){return vector<T>::back();}bool empty(){return vector<T>::empty();}
};int main()
{Stack<int> st;st.push(1);st.push(2);st.push(3);st.push(4);while (!st.empty()){cout << st.top() << " ";st.pop();}cout << endl;return 0;
}


2.基类与派生类的转换

1.public继承的派⽣类对象可以赋值给基类的对象,基类的指针,基类的引用

// 1.派⽣类对象可以赋值给基类的指针/引⽤/对象
Person* pp = &sobj;
Person& rp = sobj;
//派⽣类对象可以赋值给基类的对象是通过调⽤后⾯会讲解的基类的拷⻉构造完成的
Person pobj = sobj;

这⾥有个形象的说法叫切⽚或者切割。寓意把派⽣类中基类那部分切出来(不会产生临时变量),基类指针或引⽤指向的是派⽣类中切出来的基类那部分

     

2.基类对象不能赋值给派⽣类对象

         

//2.基类对象不能赋值给派⽣类对象,这⾥会编译报错
sobj = pobj;

3.基类的指针或者引⽤可以通过强制类型转换赋值给派⽣类的指针或者引⽤

   

但是必须是基类的指针是指向派⽣类对象时才是安全的。这⾥基类如果是多态类型,可以使⽤RTTI(Run-Time-Type-Information)的dynamic_cast)来进⾏识别后进⾏安全转换


3. 继承中的作用域

基类与派生类都具有不同的作用域,所以不存在重载,因为重载需要在相同的作用域

3.1 隐藏规则


1. 在继承体系中基类和派⽣类都有独⽴的作⽤域

     
2. 如果派⽣类和基类中有同名成员,派⽣类的同名成员将屏蔽基类对同名成员的直接访问,这种情况叫隐藏。在派⽣类成员函数中,可以使⽤ 基类::基类成员 显⽰访问)

   
3. 需要注意的是如果是成员函数的隐藏,只需要函数名相同就构成隐藏

   
4. 注意在实际中在继承体系里面最好不要定义同名的成员

class Parent
{
public:void fun(){cout << "fun()" << endl;}
};class Child : public Parent
{
public:void fun(int i){cout << "fun(i)" << endl;}
};int main()
{Parent p;Child c;//报错,因为子类中没有参数为空的fun函数,而继承父类中的fun函数被隐藏,所以会报错,指定作用域即可//c.fun();c.Parent::fun();return 0;
}


4. 派⽣类的默认成员函数

子类有6个默认成员函数,默认的意思就是指我们不写,编译器会变我们⾃动⽣成⼀个,那么在派⽣类中,这⼏个成员函数是如何⽣成的呢?

4.1 4个常见默认成员函数

 1. 派⽣类的构造函数必须调用基类的构造函数初始化基类的那⼀部分成员。如果基类没有默认的构造函数,则必须在派⽣类构造函数的初始化列表里面显⽰调⽤

 

class Person
{
public:Person(const char* name = "xxx"): _name(name){cout << "Person()" << endl;}Person(const Person& p): _name(p._name){cout << "Person(const Person& p)" << endl;}Person& operator=(const Person& p){cout << "Person operator=(const Person& p)" << endl;if (this != &p)_name = p._name;return *this;}~Person(){cout << "~Person()" << endl;}
protected:string _name; // 姓名
};class Student : public Person
{
public:Student(const char* name, int num, const char* addrss):Person(name),_num(num),_addrss(addrss){}protected:int _num = 1; //学号string _addrss = "中国";int* _ptr = new int[10];
};int main()
{Student s1("张三", 1, "中国");Student s2(s1);Student s3("李四", 2, "湖北");s1 = s3;/*Person* ptr = new Person;delete ptr;*/return 0;
}

2.派⽣类的拷贝构造函数必须调用基类的拷⻉构造完成基类的拷⻉初始化

       

对于内置类型:值拷贝                           对于自定义类型:默认拷贝构造

      

对于继承而来的父类成员:调用父类的拷贝构造

   

子类使用默认拷贝构造函数即可,除非开辟了新的空间需要自定义拷贝构造

一般情况下子类的构造需要自己写,拷贝构造,赋值重载,析构这三个可以看作一个整体, 一般不需要自己写,因为有资源需要写析构去释放的时候才会写拷贝构造和赋值重载

// 严格说Student拷贝构造默认生成的就够用了
// 如果有需要深拷贝的资源,才需要自己实现Student(const Student& s):Person(s),_num(s._num),_addrss(s._addrss){// 深拷贝}

3.派⽣类的operator=必须调⽤基类的operator=完成基类的复制。需要注意的是派⽣类的 operator=隐藏了基类的operator=,所以显示调⽤基类的operator=,需要指定基类作⽤域

// 严格说Student赋值重载默认生成的就够用了// 如果有需要深拷贝的资源,才需要自己实现Student& operator=(const Student& s){if (this != &s){// 父类和子类的operator=构成隐藏关系Person::operator=(s);_num = s._num;_addrss = s._addrss;}return *this;}

4.派⽣类的析构函数会在被调⽤完成后⾃动调⽤基类的析构函数清理基类成员。因为这样才能保证派⽣类对象先清理派⽣类成员再清理基类成员的顺序

    

5.派⽣类对象初始化先调⽤基类构造再调派⽣类构造

      

6.派⽣类对象析构清理先调⽤派⽣类析构再调基类的析构

// 严格说Student析构默认生成的就够用了// 如果有需要显示释放的资源,才需要自己实现// 析构函数都会被特殊处理成destructor() ~Student(){// 子类的析构和父类析构函数也构成隐藏关系// 规定:不需要显示调用,子类析构函数之后,会自动调用父类析构// 这样保证析构顺序,先子后父//显示调用取决于实现的人,不能保证//Person::~Person();cout << "~Student()" << endl;}

                           子类的初始化的顺序是先父后子,析构顺序是先子后父                                


7.因为多态中⼀些场景析构函数需要构成重写重写的条件之⼀是函数名相同。那么编译器会对析构函数名进⾏特殊处理,处理成destructor(),所以基类析构函数不加virtual的情况下,派⽣类析构函数和基类析构函数构成隐藏关系  

class Person
{
public:Person(const char* name = "xxx"): _name(name){cout << "Person()" << endl;}Person(const Person& p): _name(p._name){cout << "Person(const Person& p)" << endl;}Person& operator=(const Person& p){cout << "Person operator=(const Person& p)" << endl;if (this != &p)_name = p._name;return *this;}~Person(){cout << "~Person()" << endl;}
protected:string _name; // 姓名
};class Student : public Person
{
public:Student(const char* name, int num, const char* addrss):Person(name),_num(num),_addrss(addrss){}// 严格说Student拷贝构造默认生成的就够用了// 如果有需要深拷贝的资源,才需要自己实现Student(const Student& s):Person(s),_num(s._num),_addrss(s._addrss){// 深拷贝}// 严格说Student赋值重载默认生成的就够用了// 如果有需要深拷贝的资源,才需要自己实现Student& operator=(const Student& s){if (this != &s){// 父类和子类的operator=构成隐藏关系Person::operator=(s);_num = s._num;_addrss = s._addrss;}return *this;}// 严格说Student析构默认生成的就够用了// 如果有需要显示释放的资源,才需要自己实现// 析构函数都会被特殊处理成destructor() ~Student(){// 子类的析构和父类析构函数也构成隐藏关系// 规定:不需要显示调用,子类析构函数之后,会自动调用父类析构// 这样保证析构顺序,先子后父,显示调用取决于实现的人,不能保证// 先子后父//Person::~Person();//delete _ptr;}	protected:int _num = 1; //学号string _addrss = "中国";int* _ptr = new int[10];
};int main()
{Student s1("张三", 1, "中国");Student s2(s1);Student s3("李四", 2, "湖北");s1 = s3;/*Person* ptr = new Person;delete ptr;*/return 0;
}


4.2 实现⼀个不能被继承的类


方法一:将父类的构造函数私有化,这样子类就无法实例化对象,因为私有的成员在子类里是不可见的,但是如果不去定义的话编译器就不会报错

//方法一:将基类的构造函数私有化,这样派生类就无法实例化对象
class Parent
{
private:Parent(){cout << "Parent()" << endl;}
};class Child :public Parent
{
public:Child(){cout << "Child()" << endl;}
};

方法2:C++11新增了⼀个final关键字,final修改基类,派⽣类就不能继承了 

// C++11的⽅法
class Base final
{
public:void func5() { cout << "Base::func5" << endl; }
protected:int a = 1;
private:// C++98的⽅法/*Base(){}*/
};class Derive :public Base
{void func4() { cout << "Derive::func4" << endl; }
protected:int b = 2;
};int main()
{Base b;Derive d;return 0;
}


5. 继承与友元


友元关系不能继承,也就是说基类友元不能访问派生类私有和保护成员

class Student;class Person
{
public:friend void Display(const Person& p, const Student& s);
protected:string _name; // 姓名
};
class Student : public Person
{
protected:int _stuNum; // 学号
};
void Display(const Person& p, const Student& s)
{cout << p._name << endl;cout << s._stuNum << endl;
}
int main()
{Person p;Student s;// 编译报错:error C2248: “Student::_stuNum”: ⽆法访问 protected 成员// 解决⽅案:Display也变成Student 的友元即可Display(p, s);return 0;
}


6.继承与静态成员

基类定义了一个静态成员,那么无论有多少子类都只有一个静态变量成员,即一个static实例

class Person
{
public:string _name;static int _count;
};
int Person::_count = 0;
class Student : public Person
{
protected:int _stuNum;
};
int main()
{Person p;Student s;// 这⾥的运⾏结果可以看到⾮静态成员_name的地址是不⼀样的// 说明派⽣类继承下来了,⽗派⽣类对象各有⼀份cout << &p._name << endl;cout << &s._name << endl;// 这⾥的运⾏结果可以看到静态成员_count的地址是⼀样的// 说明派⽣类和基类共⽤同⼀份静态成员cout << &p._count << endl;cout << &s._count << endl;// 公有的情况下,⽗派⽣类指定类域都可以访问静态成员cout << Person::_count << endl;cout << Student::_count << endl;return 0;
}


 7. 多继承及其菱形继承问题

7.1 继承模型


单继承:⼀个派⽣类只有⼀个直接基类时称这个继承关系为单继承

    
多继承:⼀个派⽣类有两个或以上直接基类时称这个继承关系为多继承,多继承对象在内存中的模型是,先继承的基类在前⾯,后⾯继承的基类在后⾯,派⽣类成员在放到最后⾯

    
菱形继承:菱形继承是多继承的⼀种特殊情况。菱形继承的问题,从下⾯的对象成员模型构造,可以看出菱形继承有数据冗余和⼆义性的问题

     

在Assistant的对象中Person成员会有两份。⽀持多继承就⼀定会有菱形继承,像Java就直接不⽀持多继承,规避掉了这⾥的问题,所以实践中我们也是不建议设计出菱形继承这样的模型的

 单继承:

多继承: 

菱形继承:

//菱形继承
class Person
{
public:string _name; // 姓名
};
class Student : public Person
{
protected:int _num; //学号
};
class Teacher : public Person
{
protected:int _id; // 职⼯编号
};
class Assistant : public Student, public Teacher
{
protected:string _majorCourse; // 主修课程
};
int main()
{// 编译报错:error C2385: 对“_name”的访问不明确Assistant a;a._name = "peter";// 需要显⽰指定访问哪个基类的成员可以解决⼆义性问题,但是数据冗余问题⽆法解决a.Student::_name = "xxx";a.Teacher::_name = "yyy";return 0;
}


7.2 虚继承(virtual)


有了多继承,就存在菱形继承,有了菱形继承就有菱形虚拟继承,底层实现就很复杂,性能也会有⼀些损失,所以最好不要设计出菱形继承

    

多继承可以认为是C++的缺陷之⼀,后来的⼀些编程语⾔都没有多继承,如Java 

     

使用虚继承,可以解决数据冗余和⼆义性 ,哪个类产生了 数据冗余和⼆义性,继承时就用虚继承

    

比如:B和C继承了A的数据时,A产生了数据冗余和⼆义性,那么B和C就要使用虚继承

class Person
{
public:string _name; // 姓名int _tel;int _age;string _gender;string _address;
};// 使⽤虚继承Person类
class Student : virtual public Person
{
protected:int _num; //学号
};// 使⽤虚继承Person类
class Teacher : virtual public Person
{
protected:int _id; // 职⼯编号
};// 教授助理
class Assistant : public Student, public Teacher
{
protected:string _majorCourse; // 主修课程
};int main()
{// 使⽤虚继承,可以解决数据冗余和⼆义性Assistant a;a._name = "peter";return 0;
}

我们可以设计出多继承,但是不建议设计出菱形继承,因为菱形虚拟继承以后,⽆论是使⽤还是底层都会复杂很多

     

当然有多继承语法⽀持,就⼀定存在会设计出菱形继承,像Java是不⽀持多继承的,就避开了菱形继承


 7.3 多继承中指针偏移问题

根据下面的代码可以得到Derive继承了Base1与Base2,其中p3自然指向的是Base1,p1由于是Base1继承而来,就与p3指向同一个位置,而p2则是由于切片后指向的是p1与p3的下一个位置,所以三者的内存地址是:p1==p3!=p2 

//继承中的指针偏移问题
class Base1
{
public:int _b1;
};class Base2
{
public:int _b2;
};class Derive : public Base1, public Base2
{int _d;
};int main()
{Derive d;Base1* p1 = &d;Base2* p2 = &d;Derive* p3 = &d;return 0;
}


 8. 继承和组合


1.  public继承是⼀种is-a的关系。也就是说每个派⽣类对象都是⼀个基类对象

    
2.  组合是⼀种has-a的关系。假设B组合了A,每个B对象中都有⼀个A对象

    
3.  继承允许你根据基类的实现来定义派⽣类的实现。这种通过⽣成派⽣类的复⽤通常被称为⽩箱复⽤(white-box reuse)。术语“⽩箱”是相对可视性⽽⾔:在继承⽅式中,基类的内部细节对派⽣类可⻅ 。继承⼀定程度破坏了基类的封装,基类的改变,对派⽣类有很⼤的影响。派⽣类和基类间的依赖关系很强,耦合度⾼

    
4.  对象组合是类继承之外的另⼀种复⽤选择。新的更复杂的功能可以通过组装或组合对象来获得。对象组合要求被组合的对象具有良好定义的接⼝。这种复⽤⻛格被称为⿊箱复⽤(black-box reuse),因为对象的内部细节是不可⻅的。对象只以“⿊箱”的形式出现。 组合类之间没有很强的依赖关系,耦合度低。优先使⽤对象组合有助于你保持每个类被封装

    
5.  优先使⽤组合,⽽不是继承。实际尽量多去⽤组合,组合的耦合度低,代码维护性好。不过也不太那么绝对,类之间的关系就适合继承(is-a)那就⽤继承,另外要实现多态,也必须要继承类之间的关系既适合⽤继承(is-a)也适合组合(has-a),就⽤组合

// Tire(轮胎)和Car(⻋)更符合has-a的关系
class Tire {
protected:string _brand = "Michelin"; // 品牌size_t _size = 17;// 尺⼨
};class Car {
protected:string _colour = "⽩⾊";// 颜⾊string _num = "陕ABIT00";// ⻋牌号Tire _t1;// 轮胎Tire _t2;// 轮胎Tire _t3;// 轮胎Tire _t4;// 轮胎
};class BMW : public Car {
public:void Drive() { cout << "好开-操控" << endl; }
};// Car和BMW/Benz更符合is-a的关系
class Benz : public Car {
public:void Drive() { cout << "好坐-舒适" << endl; }
};
template<class T>
class vector
{};// stack和vector的关系,既符合is-a,也符合has-a
template<class T>
class stack : public vector<T>
{};template<class T>
class stack
{
public:vector<T> _v;
};int main()
{return 0;
}

完结撒花~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/881985.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

webpack 学习入门

webpack 1. 简介1.1 webpack 是什么1.2 webpack 五个核心概念1.2.1 入口 - Entry1.2.2 出口 - Output1.2.3 Loader1.2.4 插件 - Plugins1.2.6 模式 - Mode 2. webpack 初体验2.1 初始化配置2.1.1. 准备2.1.2. 写代码2.1.3 编译打包应用 3. webpack 开发环境的基本配置3.1 打包样…

HTML(七)表格

https://chatgai.lovepor.cn/ 在HTML中&#xff0c;表格的标准形式如下&#xff1a; <table></table> 使用上面的语言&#xff0c;就已经生成了一个表格&#xff0c;只不过这个表格什么都没有 那么&#xff0c;该如何让表格存在东西呢&#xff1f; 首先&#xf…

springboot 整合spring ai实现 基于知识库的客服问答

rag 需求产生的背景介绍&#xff1a; 在使用大模型时&#xff0c;常遇到的问题之一是模型可能产生幻觉&#xff0c;即生成的内容缺乏准确性。此外&#xff0c;由于大模型不直接访问企业的专有数据&#xff0c;其响应可能会显得泛泛而谈&#xff0c;不够精准或具体&#xff0c;…

基于YOLOv10的农场实时目标检测系统(python+pyside6界面+系统源码+可训练的数据集+也完成的训练模型)

摘要&#xff1a; 基于YOLOv10的农场实时目标检测系统&#xff0c;利用4393张图片&#xff08;3905张训练集&#xff0c;488张验证集&#xff09;进行模型训练&#xff0c;最终开发出一个高效的农场目标检测模型。为了方便用户操作和实时检测&#xff0c;本系统还开发了基于Pyt…

VSCode运行QT界面

VSCode用久了,感觉Qt Creator的写起代码来还是不如VSCode得心应手,虽然目前还是存在一些问题,先把目前实现的状况做个记录,后续有机会再进一步优化。 当前方式 通过QtCreator创建一个CMake项目,然后使用CMake的方式在VSCode中进行编译。 claude给出的建议 左上角的名字会…

SiLM27212 270V 4A/4A 支持高频信号输入 集成自举二极管的高低边门极驱动器

SiLM27212系列选型&#xff1a; SiLM27212LEK-DG SiLM27212EK-DG SiLM27212LCA-DG SiLM27212CA-DG SiLM27212LCB-DG SiLM27212CB-DG SiLM27212系列是一款支持高频信号输入的高低边N沟道MOSFET驱动器&#xff0c;有着优异的性能&#xff0c;广泛应用于各类模…

Linux查看下nginx及使用的配置文件

1、查到nginx进程 ps -aef | grep nginx2、通过进行pid查到nginx路径 pwdx <pid>3、根据路径得到配置文件 path***/nginx -t如下&#xff1a;

MacOS虚拟机安装Windows停滞在“让我们为你连接到网络”,如何解决?

1. 问题描述 MacOS在虚拟机安装win11过程中&#xff0c;停止在“让我们为你连接到网络”步骤&#xff0c;页面没有任何可以点击的按钮&#xff0c;进行下一步操作。 2. 解决方案&#xff08;亲测有效&#xff09; 到达该界面&#xff0c;按下ShiftF10&#xff08;Windows&…

【机器学习】深入浅出讲解贝叶斯分类算法

0. 前言 1.贝叶斯分类器介绍 贝叶斯分类是一类分类算法的总称&#xff0c;这类算法均以贝叶斯定理为基础&#xff0c;故统称为贝叶斯分类。而朴素贝叶斯&#xff08;Naive Bayes&#xff09;分类是贝叶斯分类中最简单&#xff0c;也是常见的一种分类方法。 一些很常见的分类…

整理—计算机网络

目录 网络OSI模型和TCP/IP模型 应用层有哪些协议 HTTP报文有哪些部分 HTTP常用的状态码 Http 502和 504 的区别 HTTP层请求的类型有哪些&#xff1f; GET和POST的使用场景&#xff0c;有哪些区别&#xff1f; HTTP的长连接 HTTP默认的端口是什么&#xff1f; HTTP1.1怎…

哪科竞赛含金量更高?五大学科竞赛含金量排名

2024年五大学科竞赛赛事已经渐渐拉开帷幕&#xff0c;本月底国内不少地区即将举行生物竞赛预赛的赛事。今天我们一起来看看五大学科竞赛哪科竞赛含金量更高。 高中五大学科竞赛&#xff08;数物化生信&#xff09;是升学路上的硬通货&#xff0c;比如说在强基破格中需要五大竞赛…

揭秘提升3DMAX效率的6款必备神级插件!

对于3DMax新手来说,掌握一些高效、实用的插件能够大大提升工作效率和创作质量。以下是6个不能错过的神级插件推荐: 第1个:3DMAX造山地形插件Mountain是一款专为3dMax设计的插件,旨在帮助用户轻松快速地创建逼真的山脉地形。以下是对该插件的详细介绍: 一、插件概述 Mou…

Xilinx远程固件升级(一)——QuickBoot方案

Xilinx 7系FPGA远程更新方案——QuickBoot方式远程更新bit 一、远程更新背景和架构 对于非ZYNQ系列的常规FPGA来说&#xff0c;对于bit的更新一般使用JTAG进行烧录。而作为商用产品&#xff0c;想要进行OTA升级时&#xff0c;使用JTAG的升级方式显然不适合&#xff0c;因此&a…

Java | Leetcode Java题解之第486题预测赢家

题目&#xff1a; 题解&#xff1a; class Solution {public boolean PredictTheWinner(int[] nums) {int length nums.length;int[] dp new int[length];for (int i 0; i < length; i) {dp[i] nums[i];}for (int i length - 2; i > 0; i--) {for (int j i 1; j …

计算机毕业设计Python动漫视频分析可视化 动漫影视可视化 动漫情感分析 动漫爬虫 机器学习 深度学习 Tensorflow PyTorch LSTM模型

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系名片 &#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系名片 &#xff01; 温馨提示&#xff1a;文末有SDN 平台官方提供的学长联系名片 &#xff01; 基于Python的B站排行榜大数据分析与可视化系统…

最短路问题之dijikstra算法

//根据bfs修改而来 #include<stdio.h> #include<stdlib.h> typedef struct queue {int data;struct queue* next; }queue, * linklist; float dist_list[9]; //出发点为0 int forward_point_list[9] { -1 }; linklist front NULL; linklist rear NULL; float ma…

计算机的错误计算(一百二十五)

摘要 探讨算式 的计算精度问题。 例1. 已知 计算 不妨在 Excel 的单元格中计算&#xff0c;则有&#xff1a; 若在 Python 中计算&#xff0c;则似乎有更为精确的结果&#xff1a; 然而&#xff0c;16位的正确值是 0.3499999999999998e1&#xff08;ISRealsoft 提供&a…

前后端请求一致性学习

在进行前后端分离开发项目的过程中&#xff0c;前后端同学往往需要依照接口文档的基本信息以及相应的响应格式进行接口请求的开发&#xff0c;在这个过程中涉及到常见的Get、Post、Put、Patch等等的请求&#xff0c;相应的前后端的书写格式是什么&#xff0c;这篇文章进行一个记…

数据链中常见电磁干扰matlab仿真,对比噪声调频,线性调频,噪声,扫频,灵巧五种干扰模型

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1 噪声调频干扰 4.2 线性调频干扰 4.3 噪声干扰 4.4 扫频干扰 4.5 灵巧干扰 5.算法完整程序工程 1.算法运行效果图预览 (完整程序运行后无水印) 2.算法运行软件版本 matlab2022a 3…

Go语言中的时间比较与时区处理

文章目录 问题背景问题分析验证时区问题 解决方案方法 1&#xff1a;使用本地时区解析时间方法 2&#xff1a;将 time.Now() 转换为 UTC 最终结果总结 在后端开发中&#xff0c;时间处理往往是不可避免的&#xff0c;尤其是涉及到跨时区的应用时&#xff0c;时区问题常常会引发…