AIGC毕设项目分享:基于RAG的数字人对话系统及其应用

本研究的主要目标是设计并实现一个基于检索增强生成(RAG)技术的数字人对话系统,旨在提升数字人系统在多轮对话中的上下文管理、情境感知能力以及动态内容生成效果。系统结合了深度学习中的最新大语言模型技术,通过引入RAG框架来增强生成式对话模型,使其能够在对话过程中检索到相关知识,从而提高对话质量和用户体验。本系统在特定场景下展现了智能化和个性化的服务能力,特别适用于展厅、车载交互等应用场景。

研究中首先详细探讨了多轮对话的上下文管理与记忆机制。通过引入短期和长期记忆模块,系统能够保留用户的历史对话信息,并根据对话上下文进行追踪和适应,从而保证了对话的连贯性与一致性。此外,系统中的记忆机制使得数字人可以在不同轮次对话中保持对用户偏好和需求的了解,从而在后续对话中做出更加精准的回答。该机制的引入不仅提高了对话的智能性,也使系统能更好地适应多轮对话的复杂交互需求。

同时,本系统还设计了基于情境感知的动态内容生成模块。利用RAG技术,系统能够在用户提出问题时,感知当前的交互情境,并根据特定场景下的用户需求类型(如政策咨询、企业注册等)动态生成更符合用户需求的回答内容。该模块增强了RAG模型在特定场景下的适应性,使得数字人能够更加准确地理解用户意图,并生成与之匹配的个性化回答。本设计为数字人系统在多种应用环境中的推广奠定了基础,并展示了其在未来人机交互领域的潜力。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

参考

https://baoyu.io/translations/rag/advanced-rag-techniques-an-illustrated-overview

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/881695.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

K8S配置MySQL主从自动水平扩展

前提环境 操作系统Ubuntu 22.04 K8S 1.28.2集群(1个master2个node) MySQL 5.7.44部署在K8S的主从集群 metrics-server v0.6.4 概念简介 在K8s中扩缩容分为两种 ●Node层面:对K8s物理节点扩容和缩容,根据业务规模实现物理节点自动扩…

爬虫案例——网易新闻数据的爬取

案例需求: 1.爬取该新闻网站——(网易新闻)的数据,包括标题和链接 2.爬取所有数据(翻页参数) 3.利用jsonpath解析数据 分析: 该网站属于异步加载网站——直接网页中拿不到,需要…

MySQL-08.DDL-表结构操作-创建-案例

一.MySQL创建表的方式 1.首先根据需求文档定义出原型字段,即从需求文档中可以直接设计出来的字段 2.再在原型字段的基础上加上一些基础字段,构成整个表结构的设计 我们采用基于图形化界面的方式来创建表结构 二.案例 原型字段 各字段设计如下&…

深入理解线性表--顺序表

目录 顺序表- Seqlist -> sequence 顺序 list 表 顺序表的概念 问题与解答 顺序表的分类 静态顺序表 动态顺序表 问题与解答(递进式) 动态顺序表的实现 尾插 头插 尾删 头删 指定位置插入 指定位置删除 销毁 总结 前言:线性表是具有相同特性的一类数据结构…

2024 年 04 月编程语言排行榜,PHP 排名创新低?

编程语言的流行度总是变化莫测,每个月的排行榜都揭示着新的趋势。2024年4月的编程语言排行榜揭示了一个引人关注的现象:PHP的排名再次下滑,创下了历史新低。这种变化对于PHP开发者和整个技术社区来说,意味着什么呢? P…

现代数字信号处理I-P3 MVUE学习笔记

目录 1. 参数估计问题的提出与本质 2. 估计的性质 2.1 Ancillary(多余估计) 例1,Ancillary估计量 2. Uniformly Optimal 3. Sufficiency充分性 3.1 统计量充分性定义 例2:利用充分统计量定义获取伯努利分布的充分统计量 …

Anaroute - 理论学习(一)

一、贡献: 框架能够在考虑特定约束的同时,高效地完成复杂AMS设计的布线,并实现签署质量的性能。 提出了一种对称性约束的分配算法,根据引脚位置分配合适的网络匹配要求新的引脚聚类策略,以实现规律性的布线模式&…

微知-Bluefield DPU使用flint烧录固件报错MFE_NO_FLASH_DETECTED是什么?MFE是什么?

文章目录 背景一些报错场景MFE是什么?有哪些MFE 背景 在DPU的fw操作flint的时候,很多命令都会报这个错误:MFE_NO_FLASH_DETECTED,早期很疑惑并且猜测MFE是Mellanox Firmware Engine。实际并不是,具体还得走到mellanox…

2014年国赛高教杯数学建模B题创意平板折叠桌解题全过程文档及程序

2014年国赛高教杯数学建模 B题 创意平板折叠桌 某公司生产一种可折叠的桌子,桌面呈圆形,桌腿随着铰链的活动可以平摊成一张平板(如图1-2所示)。桌腿由若干根木条组成,分成两组,每组各用一根钢筋将木条连接…

2024 第一次周赛

A: 题目大意 骑士每连续 i 天每天会得到 i 个金币,(i 1, 2, 3 , …),那么展开看每一天可以得到的金币数:1 2 2 3 3 3 4 4 4 5 5 5 5 5 … 可以发现就是1个1 ,2个2, 3个3…,那么我…

php 生成随机数

记录:随机数抽奖 要求:每次生成3个 1 - 10 之间可重复(或不可重复)的随机数,10次为一轮,每轮要求数字5出现6次、数字4出现3次、…。 提炼需求: 1,可设置最小数、最大数、每次抽奖生成随机数的个数、是否允许重复 2,可设置每轮指定数字的出现次数 3,可设置每轮的抽奖…

一维数组的引用

#define SIZE 5 int main(void) { int i 0; int arr[SIZE] { 86,85,85,896,45 };//同理五个数据只是偶然&#xff0c;可能会更多 //输入 for (i 0;i < SIZE;i) { printf("请输入你的第%d个值&#xff1a;",i1); scanf_s(&…

Spark常用RDD算子:transformation转换算子以及action触发算子

文章目录 1. 算子&#xff08;方法&#xff09;介绍2. 常用transformation算子2.1 map 2.2 flatMap2.3 filter2.4 distinct2.6 groupBy2.7 sortBy()2.8 k-v数据[(k,v),(k1,v1)] 3. 常用action算子 1. 算子&#xff08;方法&#xff09;介绍 rdd中封装了各种算子方便进行计算&a…

【Linux网络编程】网络基础 | Socket 编程基础

&#x1f308;个人主页&#xff1a; 南桥几晴秋 &#x1f308;C专栏&#xff1a; 南桥谈C &#x1f308;C语言专栏&#xff1a; C语言学习系列 &#x1f308;Linux学习专栏&#xff1a; 南桥谈Linux &#x1f308;数据结构学习专栏&#xff1a; 数据结构杂谈 &#x1f308;数据…

【动手学深度学习】6.3 填充与步幅(个人向笔记)

卷积的输出形状取决于输入形状和卷积核的形状在应用连续的卷积后&#xff0c;我们最终得到的输出大小远小于输入大小&#xff0c;这是由于卷积核的宽度和高度通常大于1导致的比如&#xff0c;一个 240 240 240240 240240像素的图像&#xff0c;经过10层 5 5 55 55的卷积后&am…

自然语言处理问答系统:技术进展、应用与挑战

自然语言处理&#xff08;NLP&#xff09;问答系统是人工智能领域的一个重要分支&#xff0c;它通过理解和分析用户的提问&#xff0c;从大量的文本数据中提取相关信息&#xff0c;并以自然语言的形式回答用户的问题。随着深度学习技术的发展&#xff0c;尤其是预训练语言模型&…

MATLAB智能优化算法-学习笔记(4)——灰狼优化算法求解旅行商问题【过程+代码】

灰狼优化算法(Grey Wolf Optimizer, GWO)是一种基于灰狼社会行为的元启发式算法,主要模拟灰狼群体的捕猎行为(包括围攻、追捕、搜寻猎物等过程)。多旅行商问题(Multi-Traveling Salesman Problem, mTSP)是旅行商问题(TSP)的扩展,它涉及多个旅行商(车辆)从一个起点城…

深度学习:循环神经网络—RNN的原理

传统神经网络存在的问题&#xff1f; 无法训练出具有顺序的数据。模型搭建时没有考虑数据上下之间的关系。 RNN神经网络 RNN&#xff08;Recurrent Neural Network&#xff0c;循环神经网络&#xff09;是一种专门用于处理序列数据的神经网络。在处理序列输入时具有记忆性…

动态规划的优化与高级应用

姊妹篇&#xff1a; 动态规划基础与经典问题-CSDN博客 贪心算法&#xff1a;原理、应用与优化_最优解-CSDN博客​​​​​​贪心算法&#xff1a;原理、应用与优化_最优解-CSDN博客 一、动态规划的优化策 动态规划在提高时间效率的同时&#xff0c;往往会占用较多的空间。因…

【汇编语言】寄存器(CPU工作原理)(七)—— 查看CPU和内存,用机器指令和汇编指令编程

文章目录 前言1. 预备知识&#xff1a;Debug的使用1.1 什么是Debug&#xff1f;1.2 我们用到的Debug功能1.3 进入Debug1.3.1 对于16位或者32位机器的进入方式1.3.2 对于64位机器的进入方式 1.4 R命令1.5 D命令1.6 E命令1.7 U命令1.8 T命令1.9 A命令 2. 总结3. 实操练习结语 前言…