动态规划的优化与高级应用

姊妹篇:

动态规划基础与经典问题-CSDN博客

贪心算法:原理、应用与优化_最优解-CSDN博客​​​​​​贪心算法:原理、应用与优化_最优解-CSDN博客

一、动态规划的优化策

动态规划在提高时间效率的同时,往往会占用较多的空间。因此,如何优化空间复杂度是动态规划中的一个重要话题。以下介绍两种常见的优化策略:空间优化记忆化搜索

1. 空间优化

以 0-1 背包问题为例,通常我们会使用二维数组 dp[i][w]dp[i][w]dp[i][w] 来存储中间结果。然而,在实际计算中,当前状态只依赖于前一个状态。因此,我们可以将二维数组压缩为一维数组,从而降低空间复杂度。

优化后的代码:

def knapsack_optimized(wt, val, W):n = len(wt)dp = [0] * (W + 1)for i in range(n):for w in range(W, wt[i] - 1, -1):dp[w] = max(dp[w], dp[w - wt[i]] + val[i])return dp[W]

这种方法将空间复杂度从 O(n×W) 降低到了 O(W)。

2. 记忆化搜索

记忆化搜索是一种自顶向下的动态规划实现方式。它通过递归求解问题,并将已经求解的子问题结果存储起来,以避免重复计算。

斐波那契数列的记忆化搜索实现:

def fibonacci_memo(n, memo={}):if n <= 1:return nif n not in memo:memo[n] = fibonacci_memo(n-1, memo) + fibonacci_memo(n-2, memo)return memo[n]

记忆化搜索保留了递归代码的直观性,同时大大提高了算法的效率。

二、高级动态规划问题

1. 矩阵链乘法

矩阵链乘法问题是动态规划的经典应用之一。该问题描述为:给定 nnn 个矩阵的链,如何选择最佳的乘法顺序以最小化乘法运算次数?

设 A1​, A2​, ... An​为一组矩阵,其维度分别为 p0×p1, p1×p2​, ... ,pn−1​×pn​。矩阵链乘法的目标是找到一个最优的括号化方案,使得矩阵乘法的总运算次数最小。

状态定义:设 dp[i][j] 表示从第 i个矩阵到第 j 个矩阵的最小乘法次数。

状态转移方程

代码实现:

def matrix_chain_order(p):n = len(p) - 1dp = [[0] * n for _ in range(n)]for length in range(2, n+1):for i in range(n-length+1):j = i + length - 1dp[i][j] = float('inf')for k in range(i, j):q = dp[i][k] + dp[k+1][j] + p[i]*p[k+1]*p[j+1]dp[i][j] = min(dp[i][j], q)return dp[0][n-1]

矩阵链乘法问题通过动态规划将计算复杂度从指数级降到了O(n3)。

2. 编辑距离问题

编辑距离问题用于衡量两个字符串之间的相似度,最常用于拼写检查或 DNA 序列比对。其定义为将一个字符串变为另一个字符串所需的最少编辑操作次数。

状态定义:设dp[i][j] 表示将字符串 A[0:i] 变为字符串 B[0:j] 的最小操作数。

状态转移方程

代码实现:

def edit_distance(A, B):m, n = len(A), len(B)dp = [[0] * (n + 1) for _ in range(m + 1)]for i in range(1, m + 1):dp[i][0] = ifor j in range(1, n + 1):dp[0][j] = jfor i in range(1, m + 1):for j in range(1, n + 1):if A[i - 1] == B[j - 1]:dp[i][j] = dp[i - 1][j - 1]else:dp[i][j] = min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1]) + 1return dp[m][n]

编辑距离的时间复杂度为O(m×n),其中 m 和 n 分别是两个字符串的长度。

三、动态规划与其他算法结合

动态规划并不总是单独使用,它可以与其他算法思想相结合。比如,将动态规划与 贪心算法 结合,可以在一些问题中进一步优化解法。

1. 贪心与动态规划的结合

贪心算法每一步都选择局部最优解,而动态规划通过保存子问题的解来确保全局最优。两者结合时,可以先用贪心算法找到可能的局部解,再通过动态规划进行全局优化。

2. 动态规划与搜索算法的结合

动态规划可以结合 深度优先搜索(DFS) 来解决某些复杂问题,特别是图论中的路径规划问题。在这种情况下,DFS 用于遍历所有可能的解,而动态规划用于保存中间结果,避免重复搜索。

四、实际应用案例

1. 路径规划

在导航系统或地图应用中,动态规划可以用来计算两个地点之间的最短路径。例如,著名的 Floyd-Warshall 算法 就是使用动态规划来解决所有节点之间的最短路径问题。

2. 资源调度

在资源分配问题中,动态规划通过优化计算,确保在有限的资源下实现目标最大化。比如,在项目管理中,动态规划可以用于确定最优的资源使用策略。

五、小结

本文从动态规划的优化技巧、经典的高级问题以及与其他算法的结合方式进行了深入探讨。通过这些内容,读者可以更深入地理解动态规划的应用范围和潜力。在实际开发中,如何选择合适的优化策略,以及如何结合其他算法思想,将是进一步提升算法性能的关键。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/881667.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【汇编语言】寄存器(CPU工作原理)(七)—— 查看CPU和内存,用机器指令和汇编指令编程

文章目录 前言1. 预备知识&#xff1a;Debug的使用1.1 什么是Debug&#xff1f;1.2 我们用到的Debug功能1.3 进入Debug1.3.1 对于16位或者32位机器的进入方式1.3.2 对于64位机器的进入方式 1.4 R命令1.5 D命令1.6 E命令1.7 U命令1.8 T命令1.9 A命令 2. 总结3. 实操练习结语 前言…

grpc的python使用

RPC 什么是 RPC &#xff1f; RPC&#xff08;Remote Procedure Call&#xff09;远程过程调用&#xff0c;是一种计算机通信协议&#xff0c;允许一个程序&#xff08;客户端&#xff09;通过网络向另一个程序&#xff08;服务器&#xff09;请求服务&#xff0c;而无需了解…

笔试算法总结

文章目录 题目1题目2题目3题目4 题目1 使用 StringBuilder 模拟栈的行为&#xff0c;通过判断相邻2个字符是否相同&#xff0c;如果相同就进行删除 public class Main {public static String fun(String s) {if (s null || s.length() < 1) return s;StringBuilder builde…

前端开发基础NodeJS+NPM基本使用(零基础入门)

文章目录 1、Nodejs基础1.1、NodeJs简介1.2、下载安装文件1.3、安装NodeJS1.4、验证安装2、Node.js 创建第一个应用2.1、说明2.2、创建服务脚本2.3、执行运行代码2.4、测试访问3、npm 基本使用3.1、测试安装3.2、配置淘宝npm镜像3.3.1、本地安装3.3.2、全局安装3.4、查看安装信…

【网络】详解TCP协议的流量控制和拥塞控制

【网络】详解TCP协议的流量控制和拥塞控制 一. 流量控制模型窗口探测 二. 拥塞控制模型 总结 一. 流量控制 流量控制主要考虑的是接收方的处理速度。 接收端处理数据的速度是有限的.。如果发送端发的太快, 导致接收端的缓冲区被打满, 这个时候如果发送端继续发送, 就会造成丢包…

IP地址如何支持远程办公?

由于当今社会经济的飞速发展&#xff0c;各个方向的业务都不免接触到跨省、跨市以及跨国办公的需要&#xff0c;随之而来的远程操作的不方便&#xff0c;加载缓慢&#xff0c;传输文件时间过长等困难&#xff0c;如何在万里之外实现远程办公呢&#xff1f;我们以以下几点进行阐…

【GaussDB】产品简介

产品定位 GaussDB 200是一款具备分析及混合负载能力的分布式数据库&#xff0c;支持x86和Kunpeng硬件架构&#xff0c;支持行存储与列存储&#xff0c;提供PB(Petabyte)级数据分析能力、多模分析能力和实时处理能力&#xff0c;用于数据仓库、数据集市、实时分析、实时决策和混…

3DCAT实时云渲染赋能2024广东旅博会智慧文旅元宇宙体验馆上线!

广东国际旅游产业博览会&#xff08;以下简称“旅博会”&#xff09;是广东省倾力打造的省级展会品牌&#xff0c;自2009年独立成展至今已成功举办十五届。2024广东旅博会于9月13—15日在广州中国进出口商品交易会展馆A区举办&#xff0c;线上旅博会“智慧文旅元宇宙体验馆”于…

力扣21~30题

21题&#xff08;简单&#xff09;&#xff1a; 分析&#xff1a; 按要求照做就好了&#xff0c;这种链表基本操作适合用c写&#xff0c;python用起来真的很奇怪 python代码&#xff1a; # Definition for singly-linked list. # class ListNode: # def __init__(self, v…

Parallels Desktop意外退出,Parallels Desktop安装软件很卡闪退怎么办?

Parallels Desktop是目前很优秀的虚拟机软件&#xff0c;操作简单&#xff0c;兼容性强而且安装也非常方便&#xff0c;备受苹果用户的喜爱和满意。然而&#xff0c;部分用户在使用Parallels Desktop的时候&#xff0c;会遇到意外退出或终端关机的情况&#xff0c;这不仅会影响…

利用 Llama 3.1模型 + Dify开源LLM应用开发平台,在你的Windows环境中搭建一套AI工作流

文章目录 1. 什么是Ollama&#xff1f;2. 什么是Dify&#xff1f;3. 下载Ollama4. 安装Ollama5. Ollama Model library模型库6. 本地部署Llama 3.1模型7. 安装Docker Desktop8. 使用Docker-Compose部署Dify9. 注册Dify账号10. 集成本地部署的 Llama 3.1模型11. 集成智谱AI大模型…

图像分类-demo(Lenet),tensorflow和Alexnet

目录 demo(Lenet) 代码实现基本步骤&#xff1a; TensorFlow 一、核心概念 二、主要特点 三、简单实现 参数: 模型编译 模型训练 模型评估 Alexnet model.py train.py predict.py demo(Lenet) PyTorch提供了一个名为“torchvision”的附加库&#xff0c;其中包含…

修复PDF打印速度慢

详细问题&#xff1a; 当您尝试将 PDF 文件打印到本地或网络打印机时&#xff0c;打印需要很长时间&#xff0c;因为发送打印作业后&#xff0c;打印机开始打印的速度非常慢&#xff0c;在打印任务中可以看到打印传输的数据在缓慢增长。 从其他程序打印时也不会出现打印速度慢…

AI大模型 向量Embeddings+向量数据库实现文搜文、图搜图

文搜文、图搜图介绍: 文搜文 &#xff1a;即文本搜索文本&#xff0c;是指通过输入关键词或短语&#xff0c;在大量文本数据中检索出与之相关的内容 。 搜 索引擎&#xff08;百度、谷歌、 360 &#xff09; 、 文档管理系统 、 电商搜索 。 图搜图 &#xff1a;即图像搜…

从零开始搭建一个node.js后端服务项目

目录 一、下载node.js及配置环境 二、搭建node.js项目及安装express框架 三、集成nodemon&#xff0c;实现代码热部署 四、Express 应用程序生成器 一、下载node.js及配置环境 网上很多安装教程&#xff0c;此处就不再赘述了 版本信息 C:\Users\XXX>node -v v20.15.0…

IDEA Sping Boot 多配置文件application Maven动态切换

新建application-dev.yml与application-prod.yml pom.xml文件下添加profiles等 让idea识别出配置文件 <profiles><profile><id>dev</id><properties><!-- 环境标识&#xff0c;需要与配置文件的名称相对应 --><profiles.active>dev&…

欧科云链研究院深掘链上数据:洞察未来Web3的隐秘价值

目前链上数据正处于迈向下一个爆发的重要时刻。 随着Web3行业发展&#xff0c;公链数量呈现爆发式的增长&#xff0c;链上积聚的财富效应&#xff0c;特别是由行业热点话题引领的链上交互行为爆发式增长带来了巨量的链上数据&#xff0c;这些数据构筑了一个行为透明但与物理世…

(32)噪声信号的时域分析:均值、方差、与功率

文章目录 前言一、生成噪声信号并画图二、计算信号的均值、方差、与功率三、结果分析 前言 本文对叠加了高斯白噪声的一段整周期余弦信号进行时域分析&#xff0c;使用MATLAB进行信号生成&#xff0c;并计算其均值、方差、与功率。最后给出对计算结果的分析&#xff0c;阐明均…

开源新生活,社区齐乐活:COSCon'24 社区合作和开源集市招募中,诚邀广大社区参与!...

一年一度的开源盛会&#xff0c;COSCon24第九届中国开源年会暨开源社10周年嘉年华&#xff0c;将于11月2-3日&#xff0c;在北京•中关村国家自主创新示范区展示中心召开&#xff01;本次大会的主题是&#xff1a;「Open Source&#xff0c;Open Life | 开源新生活」&#xff0…