【花卉识别系统】Python+卷积神经网络算法+人工智能+深度学习+图像识别+算法模型

一、介绍

花朵识别系统。本系统采用Python作为主要编程语言,基于TensorFlow搭建ResNet50卷积神经网络算法模型,并基于前期收集到的5种常见的花朵数据集(向日葵、玫瑰、蒲公英、郁金香、菊花)进行处理后进行模型训练,最后得到一个识别精度较高的模型,然后保存为本地的h5格式文件,便于后续调用使用。在可视化操作界面开发中使用Django开发Web网页操作界面,实现用户上传一张花朵图片识别其名称。


在本项目中,我们设计并实现了一个基于人工智能技术的花朵识别系统。该系统以Python语言为开发基础,利用深度学习中的卷积神经网络(CNN)算法来实现花朵图像的自动分类与识别。为此我们选用了ResNet50模型,这是一种经典的深度残差网络,能够有效处理复杂的图像识别任务,尤其适用于具有细微特征差异的多类别图像分类问题。

数据集方面,我们收集了五种常见花卉的图像,包括向日葵、玫瑰、蒲公英、郁金香和菊花。经过数据预处理后,这些图像数据被用来训练ResNet50模型。通过大量训练和参数调优,最终获得了一个识别精度较高的花朵分类模型。为了便于后续应用,我们将训练好的模型保存为h5格式文件,确保可以在实际部署中快速调用。

在系统的用户交互层面,我们采用Django框架开发了一个简洁直观的Web操作界面,允许用户上传花朵图片,并通过模型的推理功能实时输出花朵的名称。该系统旨在为用户提供一个便捷的工具,通过图像识别技术轻松了解不同种类的花卉。项目的整体设计结合了深度学习、数据处理和Web开发等多个领域的知识,具有较强的实用性和扩展性,能够进一步推广至其他物体分类任务。

二、效果图片展示

img_05_27_15_30_49

img_05_27_15_30_55

img_05_27_15_31_01

img_05_27_15_31_06

三、演示视频 and 完整代码 and 远程安装

地址:https://www.yuque.com/ziwu/yygu3z/zetq5wehgyh7gufv

四、ResNet50卷积神经网络算法介绍

ResNet50是深度学习中常用的卷积神经网络(CNN)之一,全称为Residual Network,其最大的特点是引入了残差模块(Residual Block)。传统的深度网络随着层数加深,容易出现梯度消失或梯度爆炸的问题,导致训练效果下降。ResNet50通过在网络中加入“跳跃连接”(skip connections),将输入直接传递到后面的层,有效缓解了深层网络训练的退化问题。

ResNet50网络由50层深度构成,其中包含卷积层、池化层、全连接层以及残差模块。残差模块允许原始输入和经过卷积处理的输出相加,这一结构的引入使得模型能够更加高效地学习到特征,同时避免过深网络带来的梯度问题。此外,ResNet50还在分类任务中表现出色,适合处理复杂的图像识别任务,如图像分类、目标检测等。

以下是使用TensorFlow和Keras框架加载ResNet50模型的代码示例:

from tensorflow.keras.applications import ResNet50
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
from tensorflow.keras.optimizers import Adam# 加载预训练的ResNet50模型(不包括顶层全连接层)
base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3))# 添加全局平均池化层和一个全连接层
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(5, activation='softmax')(x)  # 5类花朵分类# 构建最终模型
model = Model(inputs=base_model.input, outputs=x)# 冻结预训练模型的卷积层
for layer in base_model.layers:layer.trainable = False# 编译模型
model.compile(optimizer=Adam(), loss='categorical_crossentropy', metrics=['accuracy'])# 打印模型结构
model.summary()

这段代码展示了如何使用预训练的ResNet50模型进行自定义分类任务,通过在ResNet50基础上添加新的输出层进行5类花朵的分类。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/881626.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringBoot基础(一)

5.注解Configuration 标注一个类为配置类 6.注解Bean 用Bean标注方法等价于XML中配置的bean Configuration //容器启动时加载 public class AppBootConfig {//创建bean实例 别名为stuBean(name "stu")public Student getStudent(){Student stu new Student();s…

GitHub简介与安装使用入门教程

1、Git与GitHub的简介 Git是目前世界上最先进的分布式控制系统,它允许开发者跟踪和管理源代码的改动历史记录等,可以将你的代码恢复到某一个版本,支持多人协作开发。它的核心功能包括版本控制、分支管理、合并和冲突解决等,其操作…

PHP系统中502 的原因及解决方法

在PHP系统中,502错误通常表示网关错误,即服务器作为网关或代理,从上游服务器收到无效响应。这种错误可能由多种原因引起,以下是一些常见的原因及相应的解决方法: 原因及解决方法 PHP-FPM进程问题 进程崩溃&#xff1a…

【原创】java+springboot+mysql疫苗追踪管理系统设计与实现

个人主页:程序猿小小杨 个人简介:从事开发多年,Java、Php、Python、前端开发均有涉猎 博客内容:Java项目实战、项目演示、技术分享 文末有作者名片,希望和大家一起共同进步,你只管努力,剩下的交…

【机器学习】——神经网络与深度学习:从基础到应用

文章目录 神经网络基础什么是神经网络?神经网络的基本结构激活函数 深度学习概述什么是深度学习?常见的深度学习算法 深度学习的工作流程深度学习的实际应用结论 引言 近年来,神经网络和深度学习逐渐成为人工智能的核心驱动力。这类模型模仿人…

uni-app 拍照图片添加水印

获取图片信息 uni.chooseImage({count: 6, //默认9sizeType: ["original", "compressed"], //可以指定是原图还是压缩图,默认二者都有sourceType: ["camera"], //从相册选择success: async function (result: any) {if (!props.isMar…

2024最新版安装教程!Python安装+PyCharm安装使用教程!!(非常简单)

Python下载安装 一、进入Python官网首页,下载最新版的Python 官方网址:Download Python | Python.org 鼠标悬浮在Downloads,选择最新版本 注意:由于Python官网服务器设立在国外,所以下载速度非常慢,我这…

STM32 SPI串行总线

目录 STM32的SPI通信原理 SPI串行总线概述 SPI串行总线互连方式 STM32F1 SPI串行总线的工作原理 SPI串行总线的特征 SPI串行总线的内部结构 SPI串行总线时钟信号的相位和极性 STM32的SPI接口配置 STM32的SPI接口数据发送与接收过程 SPI的HAL 驱动函数 STM32的SPI通信…

Oracle Linux 9 (CentOS Stream 9) 安装 node.js 20

Oracle Linux 的 node 默认版本为 16,运行dnf update也无法改变大版本,还需要进行额外操作1 查看支持的版本 sudo dnf module list nodejs输出如下 Last metadata expiration check: 3:37:22 ago on Fri 11 Oct 2024 09:08:18 PM JST. Oracle Linux 9 Ap…

Linux高级编程_32_磁盘映射

文章目录 磁盘映射相关函数mmap函数作用: munmap函数作用: truncate 函数作用: 语法:使用步骤: 磁盘映射 概述: > 存储映射 I/O (Memory-mapped I/O) 使一个磁盘文件与存储空间中的一个缓冲区相映射。…

H7-TOOL的LUA小程序教程第14期:任意波形信号发生器,0-20mA输出和微型数控电源(2024-10-11,已更新)

LUA脚本的好处是用户可以根据自己注册的一批API(当前TOOL已经提供了几百个函数供大家使用),实现各种小程序,不再限制Flash里面已经下载的程序,就跟手机安装APP差不多,所以在H7-TOOL里面被广泛使用&#xff…

Springmvc Thymeleaf 标签

Thymeleaf是一个适用于Java的模板引擎,它允许开发者将动态内容嵌入到HTML页面中。在SpringMVC框架中,Thymeleaf可以作为一个视图解析器,使得开发者能够轻松地创建动态网页。以下是关于SpringMVC中Thymeleaf标签的详细介绍: 一、T…

vue3学习:数字时钟遇到的两个问题

在前端开发学习中,用JavaScript脚本写个数字时钟是很常见的案例,也没什么难度。今天有时间,于是就用Vue的方式来实现这个功能。原本以为是件非常容易的事,没想到却卡在两个问题上,一个问题通过别人的博文已经找到答案&…

如何解决Elasticsearch容器因“Connection refused”导致的问题

在使用Elasticsearch时,尤其是将Elasticsearch部署在Docker容器中,可能会遇到连接被拒绝(Connection refused)的情况。 1. 问题现象 在执行Python脚本或其他操作时,可能会遇到如下错误提示: elasticsear…

使用 `netcat`(nc)工具进行TCP数据发送和接收

Netcat(通常缩写为nc)是一个功能强大的网络工具,常被称为“瑞士军刀”的网络工具。它用于在网络上进行各种操作,比如读写网络连接、调试和分析网络服务等。以下是关于Netcat的一些详细介绍: ### 主要功能 1. **TCP/U…

Java—继承性与多态性

目录 一、this关键字 1. 理解this 2. this练习 二、继承性 2.1 继承性的理解 2.1.1 多层继承 2.2 继承性的使用练习 2.2.1 练习1 2.2.2 练习2 2.3 方法的重写 2.4 super关键字 2.4.1 子类对象实例化 三、多态性 3.1 多态性的理解 3.2 向下转型与多态练习 四、Ob…

03 django管理系统 - 部门管理 - 部门列表

部门管理 首先我们需要在models里定义Dept类 # 创建部门表 class Dept(models.Model):name models.CharField(max_length100)head models.CharField(max_length100)phone models.CharField(max_length15)email models.EmailField()address models.CharField(max_length2…

使用verilog设计实现简单神经网络加速器及其仿真

以下是使用FPGA实现简单神经网络加速器的基本步骤: **一、神经网络模型选择与简化** 1. **选择合适的神经网络模型** - 对于简单的神经网络加速器,可以选择多层感知机(MLP)作为基础模型。MLP由输入层、隐藏层和输出层组成,各层之间通过全连接方式连接。 - 例如,构…

k8s : 在master节点部署服务

部署多个work节点过于麻烦,于是打算直接在master节点部署服务测试 解决办法: k8s集群init后,你的master节点会被固定分配污点taint信息,这个污点的作用是让没有设置容忍的pod不会被调度到这个节点,因此我们的服务一般…

【Python】selenium获取鼠标在网页上的位置,并定位到网页位置模拟点击的方法

在使用Selenium写自动化爬虫时,遇到验证码是常事了。我在写爬取测试的时候,遇到了点击型的验证码,例如下图这种: 这种看似很简单,但是它居然卡爬虫?用简单的点触验证码的方法来做也没法实现 平常的点触的方…