【文件增量备份系统】MySQL百万量级数据量分页查询性能优化

🎯 导读:本文针对大数据量下的分页查询性能问题进行了深入探讨与优化,最初查询耗时长达12秒,通过避免全表计数及利用缓存保存总数的方式显著提升了浅分页查询速度。面对深分页时依然存在的延迟,采用先查询倒数第N条记录ID,再依据此ID获取后继记录的策略,进一步降低了查询时间。此方案适用于优化大量数据背景下的分页展示性能问题。
🏠️ 项目仓库:数据增量备份系统
📙 项目介绍:【文件增量备份系统】系统功能介绍与开源说明

文章目录

  • 问题说明
  • 原因排查
  • total查询优化
    • 实现步骤
      • 在缓存类中添加一个原子类的备份文件总数属性
      • 实现一个更新缓存值的方法
      • 在项目启动成功之后,调用上面方法记录total值
      • 修改分页查询方法:在分页查询的时候,不要查询总数,总数从缓存中读取
      • 新增文件、删除文件时更新缓存值
    • 测试
  • 深分页问题优化
    • 问题说明
    • 优化实现
    • 测试
    • explain效率比较分析
  • 总结

问题说明

当数据量达到百万级时,查询性能已经非常慢了

在这里插入图片描述
经过查看日志,可以发现查询一次接口,耗时高达 两年半 5 秒,而且查的还是第一页,等查完数据,黄花菜都凉了,受不了一点,为了用户的体验,必须改进

原因排查

原始代码如下,对id进行降序排序是因为id是递增的,id越大,代表文件备份时间越新。对id进行排序是为了把最新备份的文件记录放在最前面

@Override
public PageResponse<BackupFile> pageBackupFileV1(BackupFileRequest request, boolean isOrder) {long start = System.currentTimeMillis();QueryWrapper<BackupFile> queryWrapper = new QueryWrapper<>();if (request.getBackupSourceId() != null) {queryWrapper.eq("backup_source_id", request.getBackupSourceId());}if (request.getBackupTargetId() != null) {queryWrapper.eq("backup_target_id", request.getBackupTargetId());}if (!StringUtils.isEmpty(request.getSourceFilePath())) {queryWrapper.like("source_file_path", request.getSourceFilePath());}if (!StringUtils.isEmpty(request.getTargetFilePath())) {queryWrapper.like("target_file_path", request.getTargetFilePath());}queryWrapper.orderByDesc("id");IPage<BackupFile> page = baseMapper.selectPage(new Page(request.getCurrent(), request.getSize()), queryWrapper);System.out.println("分页查询时间:" + (System.currentTimeMillis() - start) + "ms");return PageUtil.convert(page);
}

在这里插入图片描述

通过查看日志,发现在一次分页查询中,主要做两件事情:

  • 查询数据总条数
SELECT COUNT(*) AS total FROM backup_file
  • 进行真正的分页查询
SELECT id,backup_source_id,backup_target_id,source_file_path,target_file_path,backup_num,file_type,last_backup_time,file_name,file_suffix,file_length,file_length_after_compress,father_id,is_compress,is_contain_file,create_time,update_time FROM backup_file ORDER BY id DESC LIMIT 10

那上面慢的是哪个sql呢,还是说两个都慢,分别对两个sql进行单元测试

【查询数据总条数】

==>  Preparing: SELECT COUNT( * ) AS total FROM backup_file
==> Parameters:
<==    Columns: total
<==        Row: 3458533
<==      Total: 1
Closing non transactional SqlSession [org.apache.ibatis.session.defaults.DefaultSqlSession@521d455c]
时间:4093ms

【进行真正的分页查询】

==>  Preparing: SELECT id,backup_source_id,backup_target_id,source_file_path,target_file_path,backup_num,file_type,last_backup_time,file_name,file_suffix,file_length,file_length_after_compress,father_id,is_compress,is_contain_file,create_time,update_time FROM backup_file ORDER BY id DESC LIMIT 10
==> Parameters:
<==    Columns: id, backup_source_id, backup_target_id, source_file_path, target_file_path, backup_num, file_type, last_backup_time, file_name, file_suffix, file_length, file_length_after_compress, father_id, is_compress, is_contain_file, create_time, update_time
......
<==      Total: 10
Closing non transactional SqlSession [org.apache.ibatis.session.defaults.DefaultSqlSession@327ac23]
时间:25ms

好家伙,原来慢的是查询总数。那为什么这么慢呢?
原因是 COUNT() 需要遍历整个表中的每一行来计算总行数(涉及大量的磁盘I/O操作,尤其是如果数据分布在多个磁盘块上时),因为行数多,所以慢

total查询优化

既然查询total那么久的话,怎么加速total查询呢,最方便的一个方法就是使用缓存。查询一次total就把它放到缓存中,当新增或修改数据时,再更新缓存

实现步骤

在缓存类中添加一个原子类的备份文件总数属性

import java.util.Set;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.atomic.AtomicLong;/*** 缓存类** @Author dam* @create 2024/2/19 19:57*/
public class Cache {....../*** 所备份文件的总数量*/public static AtomicLong FILE_TOTAL_NUM = new AtomicLong();
}

实现一个更新缓存值的方法

/*** 更新缓存中的total值*/
@Override
public void updateTotalCache() {Long total = baseMapper.selectCount(new QueryWrapper<BackupFile>().select("id"));FILE_TOTAL_NUM.set(total);
}

在项目启动成功之后,调用上面方法记录total值

import lombok.extern.slf4j.Slf4j;
import org.dam.service.BackupFileService;
import org.dam.service.BackupTaskService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.CommandLineRunner;
import org.springframework.stereotype.Component;/*** @Author dam* @create 2024/1/25 19:29*/
@Component
@Slf4j
public class BackupTaskInit implements CommandLineRunner {@Autowiredprivate BackupTaskService backupTaskService;@Autowiredprivate BackupFileService backupFileService;@Overridepublic void run(String... args) throws Exception {log.info("项目启动成功,执行初始化,将没有完成的备份任务设置为失败状态");backupTaskService.updateNotFinishedTask();log.info("项目启动成功,更新备份文件总数缓存");backupFileService.updateTotalCache();}
}

修改分页查询方法:在分页查询的时候,不要查询总数,总数从缓存中读取

@Override
public PageResponse<BackupFile> pageBackupFileV2(BackupFileRequest request, boolean isOrder) {long start = System.currentTimeMillis();QueryWrapper<BackupFile> queryWrapper = new QueryWrapper<>();if (request.getBackupSourceId() != null) {queryWrapper.eq("backup_source_id", request.getBackupSourceId());}if (request.getBackupTargetId() != null) {queryWrapper.eq("backup_target_id", request.getBackupTargetId());}if (!StringUtils.isEmpty(request.getSourceFilePath())) {queryWrapper.like("source_file_path", request.getSourceFilePath());}if (!StringUtils.isEmpty(request.getTargetFilePath())) {queryWrapper.like("target_file_path", request.getTargetFilePath());}queryWrapper.orderByDesc("id");Page<BackupFile> page = new Page<>(request.getCurrent(), request.getSize());// 关闭总记录数统计page.setSearchCount(false);IPage<BackupFile> pageResult = baseMapper.selectPage(page, queryWrapper);List<BackupFile> backupFileList = pageResult.getRecords();PageResponse pageResponse = new PageResponse();pageResponse.setRecords(backupFileList);pageResponse.setCurrent(request.getCurrent());pageResponse.setSize(request.getSize());pageResponse.setTotal(Cache.FILE_TOTAL_NUM.get());System.out.println("分页查询时间:" + (System.currentTimeMillis() - start) + "ms");return pageResponse;
}

新增文件、删除文件时更新缓存值

由于该系统仅为个人使用,对缓存的时效性要求没有那么高,因此我只在备份结束的时候更新缓存值即可

/*** 根据备份任务来进行备份** @param task                备份任务* @param ignoreFileList      忽略文件名列表* @param ignoreDirectoryList 忽略目录名列表*/
private void backUpByTask(Task task, List<String> ignoreFileList, List<String> ignoreDirectoryList) throws IOException {......// 更新备份文件总数缓存backupFileService.updateTotalCache();
}

测试

查询第一页数据仅需要17ms,性能得到了飞一般的提升

在这里插入图片描述

你以为到这里就优化完了吗?不不不,随着分页的深度逐步加深,查询的速度会越来越慢,请继续阅读下面的深分页问题

深分页问题优化

问题说明

在这里插入图片描述
当查看最后一页数据时(数据量有3,459,110条),发现耗时竟然接近 8 秒,性能还是太差了。原因:我们默认的分页是使用offset来实现的,假设有10000条数据,当我们查询最后一页时,即使我们只需要10条数据,数据库也需要先检索出前面的99990条记录并丢弃它们,才能得到我们需要的结果,所以这个过程很慢

==>  Preparing: SELECT id,backup_source_id,backup_target_id,source_file_path,target_file_path,backup_num,file_type,last_backup_time,file_name,file_suffix,file_length,file_length_after_compress,father_id,is_compress,is_contain_file,create_time,update_time FROM backup_file ORDER BY id DESC LIMIT ? OFFSET ?
==> Parameters: 10(Long), 3459100(Long)
......
<==      Total: 10
Closing non transactional SqlSession [org.apache.ibatis.session.defaults.DefaultSqlSession@3fc32129]
分页查询时间:7712ms

优化实现

首先根据偏移量查询id

<select id="selectIDByOffset" resultType="java.lang.Long">select idfrom backup_fileorder by id desc limit #{offset}, 1
</select>

再根据查询到的 id 来取后面 size 条数据

// 将所有sql包裹在一个事务中执行,避免创建两次SqlSession。设置为只读事务,因为这里没有更新操作
@Transactional(readOnly = true)
@Override
public PageResponse<BackupFile> pageBackupFileV3(BackupFileRequest request, boolean isOrder) {long start = System.currentTimeMillis();request.setOffset((request.getCurrent() - 1) * request.getSize());Long idByOffset = baseMapper.selectIDByOffset((request.getCurrent() - 1) * request.getSize());QueryWrapper<BackupFile> queryWrapper = new QueryWrapper<>();if (request.getBackupSourceId() != null) {queryWrapper.eq("backup_source_id", request.getBackupSourceId());}if (request.getBackupTargetId() != null) {queryWrapper.eq("backup_target_id", request.getBackupTargetId());}if (!StringUtils.isEmpty(request.getSourceFilePath())) {queryWrapper.like("source_file_path", request.getSourceFilePath());}if (!StringUtils.isEmpty(request.getTargetFilePath())) {queryWrapper.like("target_file_path", request.getTargetFilePath());}queryWrapper.orderByDesc("id");queryWrapper.le("id", idByOffset);queryWrapper.last("LIMIT " + request.getSize());List<BackupFile> backupFileList = baseMapper.selectList(queryWrapper);PageResponse pageResponse = new PageResponse();pageResponse.setRecords(backupFileList);pageResponse.setCurrent(request.getCurrent());pageResponse.setSize(request.getSize());pageResponse.setTotal(Cache.FILE_TOTAL_NUM.get());System.out.println("分页查询时间:" + (System.currentTimeMillis() - start) + "ms");return pageResponse;
}

有读者可能有疑问。为什么要分两次查询,不直接用一个子查询sql来实现呢?(例如下面的代码)我测试了,发现浅分页的时候,查询的结果没有问题,深分页之后,查出来的数据和直接分页查询的数据对不上,不知道是不是我用了分表,对子查询产生了影响(有知道的大佬求求在评论区教教我,非常感谢)

select f1.id,f1.backup_source_id,f1.backup_target_id,f1.source_file_path,f1.target_file_path,f1.backup_num,f1.file_type,f1.last_backup_time,f1.file_name,f1.file_suffix,f1.file_length,f1.file_length_after_compress,f1.father_id,f1.is_compress,f1.is_contain_file,f1.create_time,f1.update_time
from backup_file f1
where (select idfrom backup_fileorder by id desc limit #{request.offset} , 1) >= id
order by f1.id desclimit #{request.size}

测试

经过测试,发现最后一页的查询时间为 3.4 s,又把时间减少了一半

Creating a new SqlSession
Registering transaction synchronization for SqlSession [org.apache.ibatis.session.defaults.DefaultSqlSession@4cbb45b9]
JDBC Connection [HikariProxyConnection@1178808009 wrapping org.apache.shardingsphere.driver.jdbc.core.connection.ShardingSphereConnection@2c08fcbd] will be managed by Spring
==>  Preparing: select id from backup_file order by id desc limit ?, 1
==> Parameters: 3459100(Long)
<==    Columns: id
<==        Row: 1760179379180195842
<==      Total: 1
Releasing transactional SqlSession [org.apache.ibatis.session.defaults.DefaultSqlSession@4cbb45b9]
Fetched SqlSession [org.apache.ibatis.session.defaults.DefaultSqlSession@4cbb45b9] from current transaction
==>  Preparing: SELECT id,backup_source_id,backup_target_id,source_file_path,target_file_path,backup_num,file_type,last_backup_time,file_name,file_suffix,file_length,file_length_after_compress,father_id,is_compress,is_contain_file,create_time,update_time FROM backup_file WHERE (id <= ?) ORDER BY id DESC LIMIT 10
==> Parameters: 1760179379180195842(Long)
.....
Releasing transactional SqlSession [org.apache.ibatis.session.defaults.DefaultSqlSession@4cbb45b9]
分页查询时间:3492ms
Transaction synchronization committing SqlSession [org.apache.ibatis.session.defaults.DefaultSqlSession@4cbb45b9]
Transaction synchronization deregistering SqlSession [org.apache.ibatis.session.defaults.DefaultSqlSession@4cbb45b9]
Transaction synchronization closing SqlSession [org.apache.ibatis.session.defaults.DefaultSqlSession@4cbb45b9]

explain效率比较分析

通过单元测试,发现时间主要花费在根据偏移量查询id,后面根据偏移 id 来查询数据就很快了。

==> Parameters:
<==    Columns: id
<==        Row: 1760179379180195842
<==      Total: 1
Closing non transactional SqlSession [org.apache.ibatis.session.defaults.DefaultSqlSession@46b4d4e7]
id:1760179379180195842
查id时间:3169msCreating a new SqlSession
SqlSession [org.apache.ibatis.session.defaults.DefaultSqlSession@3387d45e] was not registered for synchronization because synchronization is not active
JDBC Connection [HikariProxyConnection@1063860793 wrapping org.apache.shardingsphere.driver.jdbc.core.connection.ShardingSphereConnection@1ef7e4c7] will not be managed by Spring
==>  Preparing: select id, backup_source_id, backup_target_id, source_file_path, target_file_path, backup_num, file_type, last_backup_time, file_name, file_suffix, file_length, file_length_after_compress, father_id, is_compress, is_contain_file, create_time, update_time from backup_file where ? >= id order by id desc limit 10
==> Parameters: 1760179379180195842(Long)
......
Closing non transactional SqlSession [org.apache.ibatis.session.defaults.DefaultSqlSession@3387d45e]
查数据时间:27ms

【直接分页查询】

explain SELECT id,backup_source_id,backup_target_id,source_file_path,target_file_path,backup_num,file_type,last_backup_time,file_name,file_suffix,file_length,file_length_after_compress,father_id,is_compress,is_contain_file,create_time,update_time FROM backup_file_5 ORDER BY id DESC LIMIT 1000,10

在这里插入图片描述

  • 查询类型(type)为"index",这意味着MySQL正在执行全索引扫描。这通常意味着查询只访问索引树上的数据,而不需要回表获取其他列的信息。
  • possible_keys 列显示为空,表示没有指定任何可能使用的键。然而,key 列显示 PRIMARY,说明实际上使用了主键作为索引。
  • key_len 列值为8,表明在主键上使用了完整的索引长度。对于一个整数类型的主键来说,这通常是正确的。
  • ref 列显示为 NULL,这是因为在这个查询中没有涉及与其他表的关联操作。
  • rows 列显示预计需要读取的行数为10,010。这表明查询将遍历大约10,010个索引项来找到满足条件的数据。
  • Extra 列显示 “Backward index scan”,表示MySQL正在进行反向索引扫描。这通常发生在查询从高到低排序时,或者当查询优化器认为这样做更有效率时。

【根据偏移量查询id】

explain select id from backup_file_5 order by id desc limit 1000,1

在这里插入图片描述
从分析来看,很多指标和【直接分页查询】是一样的,区别是extra值为"Backward index scan; Using index" 表明正在进行反向索引扫描,并且只使用索引,无需回表查询原始数据

【根据偏移 id 来查询数据】

explain select id, backup_source_id, backup_target_id, source_file_path, target_file_path, backup_num, file_type, last_backup_time, file_name, file_suffix, file_length, file_length_after_compress, father_id, is_compress, is_contain_file, create_time, update_time from backup_file_5 where 7373278992159211536 >= id order by id desc limit 10

在这里插入图片描述

  • 查询类型(type)为"range",这意味着MySQL正在执行范围扫描。比全表扫描或全索引扫描要好
  • possible_keys 列显示为空,表示没有指定任何可能使用的键
  • key 列显示 PRIMARY,说明实际上使用了主键作为索引
  • key_len 列值为8,表明在主键上使用了完整的索引长度。对于一个整数类型的主键来说,这通常是正确的
  • ref 列显示为 NULL,这是因为在这个查询中没有涉及与其他表的关联操作
  • rows 列显示预计需要读取的行数为124。这表明查询将遍历大约124个索引项来找到满足条件的数据
  • Extra 列显示 “Using where; Backward index scan”,表示MySQL正在进行反向索引扫描,并应用了WHERE子句中的条件

【总结】

  • 根据偏移量查询id:相对于直接分页查询,只使用 id 来查询,数据量更小,且无需回表操作查询其他字段,消耗的时间和资源少
  • 根据偏移 id 来查询数据:只需要范围扫描,效率更高

总结

  • 查询效率有了比较大的提升
    • 查询第一页,查询时间从5秒下降到ms级别,性能有巨大提升
    • 查询最后一页数据,直接分页查询耗时12.5 秒,改进查询下降到3.4 s,性能提升 3.6 倍
  • 随着数据量的进一步提升,达到千万级,现在的实现方案在查询深分页时性能肯定会非常差,还需要进一步的优化。
  • 其他常用的效率优化逻辑
    • 冷热数据分离:将不常使用的数据迁移到其他数据库中
    • 使用游标分页:记录上一页的最后一条数据id,这样查下一页就很快了,缺点是只能上下页,无法随意切换页

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/880508.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

时间序列LSTM实现

这个代码参考了时间序列预测模型实战案例(三)(LSTM)(Python)(深度学习)时间序列预测(包括运行代码以及代码讲解)_lstm预测模型-CSDN博客 结合我之前所学的lstm-seq2seq里所学习到的知识对其进行预测 import time import numpy as np import pandas as pd import torch import…

Meta Sapiens 人体AI模型

Meta 一直是开发图像和视频模型的领导者&#xff0c;现在他们又增加了一个新东西&#xff1a;Meta Sapiens。和Homo sapiens一样&#xff0c;这个模型也是关于人类的。它旨在执行与人类相关的任务&#xff0c;例如理解身体姿势、识别身体部位、预测深度&#xff0c;甚至确定皮肤…

算法课习题汇总(3)

循环日程表 设有N个选手进行循环比赛&#xff0c;其中N2M&#xff0c;要求每名选手要与其他N−1名选手都赛一次&#xff0c;每名选手每天比赛一次&#xff0c;循环赛共进行N−1天&#xff0c;要求每天没有选手轮空。 例如4个人进行比赛&#xff1a; 思路&#xff1a; 把表格…

Spring MVC 基本配置步骤 总结

1.简介 本文记录Spring MVC基本项目拉起配置步骤。 2.步骤 在pom.xml中导入依赖&#xff1a; <dependency><groupId>org.springframework</groupId><artifactId>spring-webmvc</artifactId><version>6.0.6</version><scope>…

通过WebTopo在ARMxy边缘计算网关上实现系统集成

随着工业互联网技术的发展&#xff0c;边缘计算成为了连接物理世界与数字世界的桥梁&#xff0c;其重要性日益凸显。边缘计算网关作为数据采集、处理与传输的核心设备&#xff0c;在智能制造、智慧城市等领域发挥着关键作用。 1. BL340系列概述 BL340系列是基于全志科技T507-…

MATLAB仿真实现图像去噪

摘要 数字图像处理是一门新兴技术&#xff0c;随着计算机硬件的发展&#xff0c;其处理能力的不断增强&#xff0c;数字图像的实时处理已经成为可能。由于数字图像处理的各种算法的出现&#xff0c;图像处理学科在飞速发展的同时逐渐向其他学科交叉渗透。数字图像处理是一种通过…

【目标检测】隐翅虫数据集386张VOC+YOLO

隐翅虫数据集&#xff1a;图片来自网页爬虫&#xff0c;删除重复项后整理标注而成 数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;386 标注…

电子电路的基础知识

电子电路是现代电子技术的基础&#xff0c;由电子元件&#xff08;如电阻、电容、电感、二极管、晶体管等&#xff09;和无线电元件通过一定方式连接而成的电路系统。 以下是对电子电路的详细概述&#xff1a; 一、定义与分类 定义&#xff1a;电子电路是指由电子器件和有关无…

240925-GAN生成对抗网络

GAN生成对抗网络 GAN&#xff0c;顾名思义&#xff0c;gan……咳咳&#xff0c;就是干仗嘛&#xff08;听子豪兄的课讲说这个名字还真的源于中文这个字&#xff09;&#xff0c;对应的就有两方&#xff0c;放在这里就是有两个网络互相对抗互相学习。类比武林高手切磋&#xff…

dev containers plugins for vscode构建虚拟开发环境

0. 需求说明 自用笔记本构建一套开发环境&#xff0c;用docker 虚拟插件 dev containers,实现开发环境的构建&#xff0c;我想构建一套LLMs的环境&#xff0c;由于环境配置太多&#xff0c;不想污染本地环境&#xff0c;所以选择隔离技术 1. 环境准备 vscodedocker 2. 步骤…

韦东山FreeRTOS笔记

介绍 这篇文章是我学习FreeRTOS的笔记 学的是哔哩哔哩韦东山老师的课程 在学习FreeRTOS之前已经学习过江协的标准库和一丢丢的超子说物联网的HAL了。他们讲的都很不错 正在更新&#xff0c; 大家可以在我的Gitee仓库中下载笔记源文件、项目资料等 笔记源文件可以在Notion…

idea.vmoptions 最佳配置

1. 推荐的 idea64.exe.vmoptions 配置&#xff1a; -Xms1024m -Xmx4096m -XX:ReservedCodeCacheSize512m -XX:UseG1GC -XX:SoftRefLRUPolicyMSPerMB50 -XX:CICompilerCount4 -XX:HeapDumpOnOutOfMemoryError -XX:-OmitStackTraceInFastThrow -Dsun.io.useCanonCachesfalse -Dj…

微服务JSR303解析部署使用全流程

目录 1、什么是JSR303校验 2、小试牛刀 【2.1】添加依赖 【2.2】添加application.yml配置文件修改端口 【2.3】创建实体类User 【2.4】创建控制器 【2.5】创建启动类 【注意】不必创建前端页面 3、规范返回值格式&#xff1a; 3.1添加ResultCode工具类 3.2添加Resul…

NASA数据集:ATLAS/ICESat-2 L3B 南极和北极网格陆地冰高,第 3 版

目录 简介 摘要 代码 引用 网址推荐 0代码在线构建地图应用 机器学习 ATLAS/ICESat-2 L3B Gridded Antarctic and Arctic Land Ice Height V003 简介 ATLAS/ICESat-2 L3B 南极和北极网格陆地冰高&#xff0c;第 3 版 ATL14 和 ATL15 将 ATLAS/ICESat-2 L3B 年度陆地冰…

【蓝桥杯省赛真题55】Scratch找不同游戏 蓝桥杯scratch图形化编程 中小学生蓝桥杯省赛真题讲解

scratch找不同游戏 第十五届青少年蓝桥杯scratch编程选拔赛真题解析 PS&#xff1a;其实这题在选拔赛里面就出现过类似的题目&#xff0c;只是难度提升了一点&#xff0c;具体可以见【蓝桥杯选拔赛真题84】Scratch找不同游戏 第十五届蓝桥杯scratch图形化编程 少儿编程创意编…

java日志门面之JCL和SLF4J

文章目录 前言一、JCL1、JCL简介2、快速入门3、 JCL原理 二、SLF4J1、SLF4J简介2、快速入门2.1、输出动态信息2.2、异常信息的处理 3、绑定日志的实现3.1、slf4j实现slf4j-simple和logback3.2、slf4j绑定适配器实现log4j3.2、Slf4j注解 4、桥接旧的日志框架4.1、log4j日志重构为…

通过队列实现栈

请你仅使用两个队列实现一个后入先出&#xff08;LIFO&#xff09;的栈&#xff0c;并支持普通栈的全部四种操作&#xff08;push、top、pop 和 empty&#xff09;。 实现 MyStack 类&#xff1a; void push(int x) 将元素 x 压入栈顶。int pop() 移除并返回栈顶元素。int to…

Android源码管理

文章目录 需求及场景需求困难疑惑点 源码管理方式及过程基本仓库管理方式 常用源码git 命令git init添加.gitignoregit add allgit add 文件名称git commit -a -m "提交内容说明"git statusgit loggit reset --hardgit clean -fd实际场景&#xff0c;从一个项目切换到…

大屏走马灯与echarts图表柱状图饼图开发小结

一、使用ant-design-vue的走马灯(a-carousel)注意事项 <!-- 左边的轮播图片 --><a-carousel :after-change"handleCarouselChange" autoplay class"carousel" :transition"transitionName"><div v-for"(item, index) in it…

论文阅读【时间序列】ModerTCN (ICLR2024)

【时间序列】ModerTCN (ICLR2024) 原文链接&#xff1a;ModernTCN: A Modern Pure Convolution Structure for General Time Series Analysis 代码仓库&#xff1a;ModerTCN 简易版本实现代码可以参考&#xff1a;&#xff08;2024 ICLR&#xff09;ModernTCN&#xff1a;A Mod…