电力电塔电线缺陷检测数据集 voc yolo

 电力 电塔电线缺陷检测数据集 10000张 带标注 voc yolo

电力电塔电线缺陷检测数据集

数据集描述

该数据集旨在用于电力电塔和电线的缺陷检测任务,涵盖多种常见的缺陷类型。数据集包含了大量的图像及其对应的标注信息,可用于训练计算机视觉模型,以识别和定位电力设施中的各种缺陷。

数据规模

数据集共有9838张图像,标注了44520个缺陷对象。

类别及数量

数据集中的类别及数量如下:

  1. 绑扎不规范:3717张图像,标注了14510个对象。
  2. 并线线夹保护壳缺失:3317张图像,标注了11285个对象。
  3. 耐张线夹保护壳缺失:3748张图像,标注了16148个对象。
  4. 横杆腐蚀:987张图像,标注了1556个对象。
  5. 塔头损坏:972张图像,标注了1021个对象。
标注格式

数据集中的标注信息采用了VOC(Visual Object Classes)格式,每个图像都有一个对应的XML文件,记录了每个对象的位置信息(边界框坐标)和类别标签。此外,也可以选择YOLO格式的标注文件(TXT文件),方便使用YOLO系列模型进行训练。

数据集结构

典型的数据集目录结构如下:

1power_tower_defect_detection_dataset/
2├── Annotations/
3│   ├── img_0001.xml
4│   ├── img_0002.xml
5│   └── ...
6├── ImageSets/
7│   ├── Main/
8│   │   ├── train.txt
9│   │   ├── val.txt
10│   │   └── test.txt
11├── JPEGImages/
12│   ├── img_0001.jpg
13│   ├── img_0002.jpg
14│   └── ...
15└── labels/
16    ├── train/
17    │   ├── img_0001.txt
18    │   ├── img_0002.txt
19    └── val/
20        ├── img_0001.txt
21        ├── img_0002.txt
应用场景

该数据集可以用于以下应用场景:

  • 缺陷检测与分类:训练模型识别电力电塔和电线中的不同缺陷类型。
  • 故障诊断:实时监测电力设施中的异常情况,提高故障诊断效率。
  • 预防性维护:辅助电力公司的预防性维护计划,减少因缺陷导致的停电事故。
  • 科研分析:用于研究电力设施缺陷的发生规律和发展趋势。

示例代码

以下是一个使用Python和相关库(如OpenCV、PyTorch等)来加载和展示数据集的简单示例代码:

 
1import os
2import cv2
3import xml.etree.ElementTree as ET
4from PIL import Image
5import numpy as np
6
7# 数据集路径
8dataset_path = 'path/to/power_tower_defect_detection_dataset/'
9
10# 加载图像和标签
11def load_image_and_label(image_path, annotation_path):
12    # 读取图像
13    image = Image.open(image_path).convert('RGB')
14    # 解析XML文件
15    tree = ET.parse(annotation_path)
16    root = tree.getroot()
17    objects = []
18    for obj in root.findall('object'):
19        name = obj.find('name').text
20        bbox = obj.find('bndbox')
21        xmin = int(bbox.find('xmin').text)
22        ymin = int(bbox.find('ymin').text)
23        xmax = int(bbox.find('xmax').text)
24        ymax = int(bbox.find('ymax').text)
25        objects.append([xmin, ymin, xmax, ymax, name])
26    return image, objects
27
28# 展示图像
29def show_image_with_boxes(image, boxes):
30    img = np.array(image)
31    for box in boxes:
32        xmin, ymin, xmax, ymax, name = box
33        cv2.rectangle(img, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
34        cv2.putText(img, name, (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
35    cv2.imshow('Image with Boxes', img)
36    cv2.waitKey(0)
37    cv2.destroyAllWindows()
38
39# 主函数
40if __name__ == "__main__":
41    images_dir = os.path.join(dataset_path, 'JPEGImages')
42    annotations_dir = os.path.join(dataset_path, 'Annotations')
43    
44    # 获取图像列表
45    image_files = [f for f in os.listdir(images_dir) if f.endswith('.jpg')]
46    
47    # 随机选择一张图像
48    selected_image = np.random.choice(image_files)
49    image_path = os.path.join(images_dir, selected_image)
50    annotation_path = os.path.join(annotations_dir, selected_image.replace('.jpg', '.xml'))
51    
52    # 加载图像和标签
53    image, boxes = load_image_and_label(image_path, annotation_path)
54    
55    # 展示带有标注框的图像
56    show_image_with_boxes(image, boxes)

这段代码展示了如何加载图像和其对应的VOC XML标注文件,并在图像上绘制边界框和类别标签。您可以根据实际需求进一步扩展和修改这段代码,以适应您的具体应用场景。如果您需要将VOC格式的标注转换为YOLO格式,可以参考以下转换示例:

示例代码:从VOC格式转换为YOLO格式

 

python

深色版本

1import os
2import xml.etree.ElementTree as ET
3import shutil
4
5# 数据集路径
6dataset_path = 'path/to/power_tower_defect_detection_dataset/'
7
8# VOC标注文件目录
9voc_annotations_dir = os.path.join(dataset_path, 'Annotations')
10# 输出YOLO标签文件目录
11yolo_labels_dir = os.path.join(dataset_path, 'labels')
12
13# 创建YOLO标签目录
14os.makedirs(yolo_labels_dir, exist_ok=True)
15
16# 复制VOC图像集划分文件到YOLO目录
17for split in ['train', 'val']:
18    shutil.copy(os.path.join(dataset_path, 'ImageSets/Main/{}.txt'.format(split)), os.path.join(yolo_labels_dir, '{}.txt'.format(split)))
19
20# 从VOC格式转换为YOLO格式
21def convert_voc_to_yolo(voc_path, yolo_path, width, height):
22    with open(voc_path, 'r') as infile:
23        tree = ET.parse(infile)
24        root = tree.getroot()
25        objects = []
26        for obj in root.findall('object'):
27            name = obj.find('name').text
28            bbox = obj.find('bndbox')
29            xmin = int(bbox.find('xmin').text)
30            ymin = int(bbox.find('ymin').text)
31            xmax = int(bbox.find('xmax').text)
32            ymax = int(bbox.find('ymax').text)
33            x_center = (xmin + xmax) / 2.0
34            y_center = (ymin + ymax) / 2.0
35            w = xmax - xmin
36            h = ymax - ymin
37            x_center /= width
38            y_center /= height
39            w /= width
40            h /= height
41            objects.append([name, x_center, y_center, w, h])
42
43    with open(yolo_path, 'w') as outfile:
44        for obj in objects:
45            line = f"{obj[0]} {obj[1]} {obj[2]} {obj[3]} {obj[4]}\n"
46            outfile.write(line)
47
48# 主函数
49if __name__ == "__main__":
50    # 获取VOC标注文件列表
51    voc_files = [f for f in os.listdir(voc_annotations_dir) if f.endswith('.xml')]
52    
53    # 遍历VOC文件并转换为YOLO格式
54    for voc_file in voc_files:
55        # 获取图像尺寸
56        image_file = os.path.join(dataset_path, 'JPEGImages', voc_file.replace('.xml', '.jpg'))
57        image = Image.open(image_file)
58        width, height = image.size
59        
60        # 转换并保存YOLO标签文件
61        yolo_file = os.path.join(yolo_labels_dir, voc_file.replace('.xml', '.txt'))
62        convert_voc_to_yolo(os.path.join(voc_annotations_dir, voc_file), yolo_file, width, height)

这段代码展示了如何将VOC格式的标注文件转换为YOLO格式的标签文件,方便使用YOLO系列模型进行训练。您可以根据实际需求进一步扩展和修改这段代码,以适应您的具体应用场景。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/879918.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux:进程(一)

目录 一、概念的理解 二、指令操作 一、概念的理解 在许多地方对进程的定义都是这样的一句话:加载到内存中的程序、正在运行的程序、进程可以排队 而要真正理解进程是什么,这一句话的解释远远不够。 在定义进程之前,先来理解程序&#xff0…

21、Tomato

难度 低(个人认为中) 目标 root权限 一个flag 使用VMware启动 kali 192.168.152.56 靶机 192.168.152.66 信息收集 端口信息收集 可以看到有个ftp服务,2211实际是ssh协议端口,80、8888是一个web服务 web测试 80端口显示一个tomato 查看源码给了一些…

MATLAB系列06:复数数据、字符数据和附加画图类

MATLAB系列06:复数数据、字符数据和附加画图类 6. 复数数据、字符数据和附加画图类6.1 复数数据6.1.1 复变量( complex variables)6.1.2 带有关系运算符的复数的应用6.1.3 复函数( complex function)6.1.4 复数数据的作…

【FPGA】编程方式

FPGA编程方式 1 什么是PLD?2 什么是颗粒度?3 可编程逻辑器件的编程方式有哪些?3.1 SRAM 编程技术3.2 Flash/EEPROM 编程技术3.3 反熔丝编程技术3.4 编程技术比较 参考资料 1 什么是PLD? 可编程逻辑器件 英文全称为:pr…

SpringBoot 数据库表结构文档生成

官方地址&#xff1a;https://github.com/pingfangushi/screw screw 螺丝钉&#xff0c;支持以下数据库 MySQL MariaDB TIDB Oracle SqlServer PostgreSQL Cache DB&#xff08;2016&#xff09; 生产文档支持 html word markdown 开始 添加依赖 <!-- 螺丝钉 --><…

c语言面试字符串复制

1&#xff0c;下面这个函数的打印是什么&#xff1a; #include<stdio.h> #include<string.h>int main() {char str0[5], str1[] "welcome";strcpy(str0, str1);printf("str0:%s\r\n",str0);printf("str1:%s\r\n",str1); } larkla…

nginx实现https安全访问的详细配置过程

文章目录 前言什么是 HTTP&#xff1f;什么是 HTTPS&#xff1f;HTTP 和 HTTPS 的区别为什么 HTTPS 被称为安全的&#xff1f;配置过程配置自签名证书 前言 首先我们来简单了解一下什么是http和https以及他们的区别所在. 什么是 HTTP&#xff1f; HTTP&#xff0c;全称为“超…

notepad++的json查看

json文件查看 因为接触到3dtile模型&#xff0c;所以经常需要和json打交道&#xff0c;但是很多模型是下面这种情况&#xff0c;不好阅读&#xff0c;所以可以使用notepad的插件查看 正常打开是这样的 加载notepad插件 搜索json下载安装就可以了 如果网络抽象&#xff0c;下载…

Hive企业级调优[3]—— Explain 查看执行计划

Explain 查看执行计划 Explain 执行计划概述 EXPLAIN 命令呈现的执行计划由一系列 Stage 组成。这些 Stage 之间存在依赖关系&#xff0c;每一个 Stage 可能对应一个 MapReduce Job 或者一个文件系统的操作等。如果某 Stage 对应了一个 MapReduce Job&#xff0c;则该 Job 在 …

Apache James配置连接达梦数据库

项目场景&#xff1a; Apache James配置连接达梦数据库&#xff0c;其他配置中不存在的数据库也可参考此方案。 配置步骤 1、把需要的jar包导入到James 把DmJdbcDriver18.jar复制到下面lib目录下 james-2.3.2\lib 2、 修改连接配置 james-2.3.2\apps\james\SAR-INF\confi…

C# 技巧在 foreach 循环中巧妙获取索引

目录 前言 使用 LINQ 和扩展方法 直接在 LINQ 查询中使用 使用 LINQ 的 Select() 与 Enumerable.Range() 总结 最后 前言 在C#中foreach 循环是处理集合的常见方式&#xff0c;因其简洁性和易读性而广受青睐。 但是在某些情况下&#xff0c;我们需要同时获取集合中元素的…

[深度学习]神经网络

1 人工神经网络 全连接神经网络 2 激活函数 隐藏层激活函数由人决定输出层激活函数由解决的任务决定: 二分类:sigmoid多分类:softmax回归:不加激活(恒等激活identify)2.1 sigmoid激活函数 x为加权和小于-6或者大于6,梯度接近于0,会出现梯度消失的问题即使取值 [-6,6] ,…

头戴式蓝牙耳机性价比高的有哪些?四款高能性价比机型对比推荐

在当今科技日新月异的时代&#xff0c;头戴式蓝牙耳机已经成为了我们日常生活中不可或缺的一部分&#xff0c;无论是通勤路上、健身房内还是家中休闲时&#xff0c;一副优质的头戴式蓝牙耳机都能为我们带来沉浸式的听觉体验&#xff0c;那么头戴式蓝牙耳机性价比高的有哪些&…

模版结构体没有可用成员(C3203)

没有typedef模版结构体而导致。 并且_tables[index]无法访问HashData内部的成员。

Windows系统使用PHPStudy搭建Cloudreve私有云盘公网环境远程访问

文章目录 1、前言2、本地网站搭建2.1 环境使用2.2 支持组件选择2.3 网页安装2.4 测试和使用2.5 问题解决 3、本地网页发布3.1 cpolar云端设置3.2 cpolar本地设置 4、公网访问测试5、结语 1、前言 自云存储概念兴起已经有段时间了&#xff0c;各互联网大厂也纷纷加入战局&#…

Vue(13)——router-link

router-link vue-router提供了一个全局组件router-link(取代a标签) 能跳转&#xff0c;配置to属性指定路径&#xff08;必须&#xff09;。本质还是a标签。默认会提供高亮类名&#xff0c;可以直接设置高亮样式 右键检查&#xff0c;发现多了两个类&#xff1a; 可以直接写样式…

【Python】探索 Errbot:多功能聊天机器人框架

不是旅行治愈了你&#xff0c;是你在路上放过了自己。 在当今的数字化时代&#xff0c;聊天机器人已成为企业与客户互动、提升工作效率和增加乐趣的重要工具。Errbot是一个高度可扩展的聊天机器人框架&#xff0c;它允许开发者使用Python轻松创建和定制机器人。本文将介绍Errb…

大型语言模型 (LLM) 劫持攻击不断升级,导致每天损失超过 100,000 美元

Sysdig 威胁研究团队 (TRT) 报告称&#xff0c;LLMjacking&#xff08;大型语言模型劫持&#xff09;事件急剧增加&#xff0c;攻击者通过窃取的云凭证非法访问大型语言模型 (LLM)。 这一趋势反映了 LLM 访问黑市的不断增长&#xff0c;攻击者的动机包括个人使用和规避禁令和制…

【webpack4系列】编写可维护的webpack构建配置(四)

文章目录 构建配置包设计功能模块设计和目录结构设计功能模块设计目录结构设计 使用ESLint规范构建脚本冒烟测试介绍和实际运用冒烟测试 (smoke testing)冒烟测试执行判断构建是否成功判断基本功能是否正常 单元测试和测试覆盖率测试框架编写单元测试用例单元测试接入测试覆盖率…

Ubuntu截图工具flameshot

最近在使用香橙派做一些东西&#xff0c;有些内容需要截图记录&#xff0c;这里记录一下截图工具的安装和使用过程&#xff0c;方便以后查阅。 Ubuntu截图工具flameshot flameshot 简介flameshot 安装flameshot 相关命令 flameshot 简介 linux系统里面最好用的截屏工具支持图形…