物品识别——基于python语言

目录

1.物品识别

2.模型介绍

3.文件框架

4.代码示例

4.1 camera.py

4.2 interaction.py

4.3 object_detection.py

4.4 main.py

4.5 运行结果

5.总结


1.物品识别

该项目使用Python,OpenCV进行图像捕捉,进行物品识别。我们将使用YOLO(You Only Look Once)模型进行物品识别,YOLO是一个高效的实时物体检测系统。

2.模型介绍

YOLO(You Only Look Once)是一种目标检测算法,它在实时性和精确度上取得了很好的平衡。它的核心思想是在一张图片上同时预测出所有物体的位置和类别,而无需像传统的区域提议网络(R-CNN)那样分步骤进行。

3.文件框架

 models中的定义标签文件可以搜索yolo模型来找,下面的四个代码文件是主文件,camera是调用电脑摄像头,interaction是调用opencv绘制图像框,object_detection是定义物品检测函数,main是主函数。

运行main函数即可实现物品检测。

4.代码示例

4.1 camera.py

import cv2  # 导入OpenCV库def get_camera_frame():cap = cv2.VideoCapture(0)  # 打开摄像头if not cap.isOpened():raise Exception("无法打开摄像头。")  # 如果无法打开摄像头,抛出异常ret, frame = cap.read()  # 读取帧cap.release()  # 释放摄像头if not ret:raise Exception("读取照片信息失败。")  # 如果读取失败,抛出异常return frame  # 返回捕捉到的帧

4.2 interaction.py

import cv2  # 导入OpenCV库def draw_boxes(frame, detections):for (class_name, confidence, box) in detections:x, y, w, h = boxlabel = f"{class_name} {confidence:.2f}"  # 创建标签cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)  # 绘制矩形框cv2.putText(frame, label, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)  # 绘制标签return frame  # 返回绘制后的帧

4.3 object_detection.py

import cv2  # 导入OpenCV库,用于计算机视觉任务
import numpy as np  # 导入NumPy库,用于处理数组class ObjectDetector:def __init__(self, config_path, weights_path, names_path):# 初始化YOLO模型self.net = cv2.dnn.readNetFromDarknet(config_path, weights_path)self.layer_names = self.net.getLayerNames()# 获取YOLO模型的输出层self.output_layers = [self.layer_names[i - 1] for i in self.net.getUnconnectedOutLayers()]# 读入类别名称with open(names_path, 'r') as f:self.classes = [line.strip() for line in f.readlines()]def detect_objects(self, frame):height, width = frame.shape[:2]  # 获取图像的高度和宽度# 将图像转换为YOLO模型输入所需的blob格式blob = cv2.dnn.blobFromImage(frame, 0.00392, (416, 416), (0, 0, 0), True, crop=False)self.net.setInput(blob)  # 设置YOLO模型的输入outs = self.net.forward(self.output_layers)  # 前向传播,获取检测结果class_ids = []  # 存储检测到的类别IDconfidences = []  # 存储检测到的置信度boxes = []  # 存储检测到的边框# 处理每个输出层的检测结果for out in outs:for detection in out:scores = detection[5:]  # 获取每个类别的置信度分数class_id = np.argmax(scores)  # 获取置信度最高的类别IDconfidence = scores[class_id]  # 获取最高置信度if confidence > 0.5:  # 过滤低置信度的检测结果center_x = int(detection[0] * width)center_y = int(detection[1] * height)w = int(detection[2] * width)h = int(detection[3] * height)x = int(center_x - w / 2)y = int(center_y - h / 2)boxes.append([x, y, w, h])confidences.append(float(confidence))class_ids.append(class_id)# 非极大值抑制,去除冗余的边框indices = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)result = []if len(indices) > 0:for i in indices.flatten():  # 确保indices是一个可迭代的列表box = boxes[i]result.append((self.classes[class_ids[i]], confidences[i], box))return result

4.4 main.py

import sys
import os
import cv2  # 导入OpenCV库
from camera import get_camera_frame  # 导入相机捕捉函数
from object_detection import ObjectDetector  # 导入物体检测类
from interaction import draw_boxes  # 导入绘制边框函数def main():# 配置文件路径config_path = "./pythonProject/ai_modle_win/wupin/models/yolov3.cfg"weights_path = "./pythonProject/ai_modle_win/wupin/models/yolov3.weights"names_path = "./pythonProject/ai_modle_win/wupin/models/coco.names"# 初始化物体检测器detector = ObjectDetector(config_path, weights_path, names_path)while True:frame = get_camera_frame()  # 获取摄像头帧detections = detector.detect_objects(frame)  # 检测物体frame = draw_boxes(frame, detections)  # 绘制检测结果cv2.imshow("Object Detection", frame)  # 显示结果if cv2.waitKey(1) & 0xFF == ord('q'):  # 按下 'q' 键退出breakcv2.destroyAllWindows()  # 关闭所有窗口if __name__ == "__main__":main()

4.5 运行结果

5.总结

YOLO的主要用途是计算机视觉中的目标检测任务,例如自动驾驶中的行人和车辆识别、安防监控、无人机拍摄分析等场景,它能够实现实时检测,并且对于小目标和大目标都具备较好的性能。你也快来试一试吧!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/879547.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大数据处理技术:HBase的安装与基本操作

目录 1 实验名称 2 实验目的 3 实验内容 4 实验原理 5 实验过程或源代码 5.1 Hbase数据库的安装 5.2 创建表 5.3 添加数据、删除数据、删除表 5.4 使用Java操作HBase 6 实验结果 6.1 Hbase数据库的安装 6.2 创建表 6.3 添加数据、删除数据、删除表 6.4 使用Java操…

【Elasticsearch系列七】索引 crud

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

数据结构(Day13)

一、学习内容 内存空间划分 1、一个进程启动后,计算机会给该进程分配4G的虚拟内存 2、其中0G-3G是用户空间【程序员写代码操作部分】【应用层】 3、3G-4G是内核空间【与底层驱动有关】 4、所有进程共享3G-4G的内核空间,每个进程独立拥有0G-3G的用户空间 …

[数据集][目标检测]烟叶病害检测数据集VOC+YOLO格式612张3类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):612 标注数量(xml文件个数):612 标注数量(txt文件个数):612 标注类别…

【鸿蒙】HarmonyOS NEXT星河入门到实战7-ArkTS语法进阶

目录 1、Class类 1.1 Class类 实例属性 1.2 Class类 构造函数 1.3 Class类 定义方法 1.4 静态属性 和 静态方法 1.5 继承 extends 和 super 关键字 1.6 instanceof 检测是否实例 1.7.修饰符(readonly、private、protected 、public) 1.7.1 readonly 1.7.2 Private …

汽车免拆诊断案例 | 沃尔沃V40 1.9TD断续工作

故障现象 一辆04款的沃尔沃V40 1.9 TD,发动机代码D4192T3,使用博世EDC15C发动机管理。客户说车子断续工作,怀疑是正时皮带出现问题。卸下上皮带盖,检查发现皮带仍然在原来的位置上并且没有出现松动。起动发动机,车辆能…

安卓玩机工具-----ADB与 FASTBOOT模式 图形化 多功能玩机刷机工具

工具说明 这款工具是英文版。易于使用的工具提供了用于运行 ADB 和 Fastboot 命令的图形用户界面。ADB 功能包括旁加载、安装和卸载应用程序、测试设备以及重新启动到不同的模式。可以使用 fastboot 命令进行设备管理;其中包括检查 Antirollback 和 active slots 等变…

YOLOv8 人体姿态估计动作识别关键点检测(代码+教程)

YOLOv8 人体姿态判断 项目介绍 YOLOv8 人体姿态判断 是一个基于最新YOLOv8模型的深度学习项目,旨在识别和分析人体姿态。该项目利用先进的计算机视觉技术和深度学习框架,通过摄像头捕捉实时图像或处理存储图像,识别人体的关键点&#xff0c…

在线查看 Android 系统源代码 AOSPXRef and AndroidXRef

在线查看 Android 系统源代码 AOSPXRef and AndroidXRef 1. AOSPXRef1.1. http://aospxref.com/android-14.0.0_r2/1.2. build/envsetup.sh 2. AndroidXRef2.1. http://androidxref.com/9.0.0_r3/2.2. build/envsetup.sh 3. HELLO AndroidReferences 1. AOSPXRef http://aospx…

加密与安全_优雅存储用户密码的最佳实践

文章目录 Pre概述最佳实践避免使用MD5、SHA1等快速哈希算法加盐哈希 (不推荐)使用BCrypt、Argon2等慢哈希算法 (推荐)BCrypt Code1. 自动生成和嵌入盐2. 哈希结果的格式3. 代价因子 BCrypt特点 防止暴力破解1. 登录失败锁定2. 双因素认证(2FA…

Golang | Leetcode Golang题解之第409题最长回文串

题目&#xff1a; 题解&#xff1a; func longestPalindrome(s string) int {mp : map[byte]int{}for i : 0; i < len(s); i {mp[s[i]]}res : 0for _, v : range mp {if v&1 1 {res v - 1} else {res v}}if res<len(s) {res}return res }

Python酷库之旅-第三方库Pandas(117)

目录 一、用法精讲 516、pandas.DataFrame.add_suffix方法 516-1、语法 516-2、参数 516-3、功能 516-4、返回值 516-5、说明 516-6、用法 516-6-1、数据准备 516-6-2、代码示例 516-6-3、结果输出 517、pandas.DataFrame.align方法 517-1、语法 517-2、参数 51…

Go语言基本语法

Go语言&#xff08;通常称为Golang&#xff09;是由Google开发的一种静态类型、编译型语言&#xff0c;它旨在简化系统编程、网络编程和并发编程的复杂性。 Go语言以其简洁、高效和易于理解的语法而受到开发者的喜爱。 Go语言的一些基本语法元素&#xff1a; 1. 包&#xff…

protobuf中c、c++、python使用

文章目录 protobuf实例&#xff1a;例题1&#xff1a;[CISCN 2023 初赛]StrangeTalkBot分析&#xff1a;思路&#xff1a;利用&#xff1a; 例题2&#xff1a;[CISCN 2024]protoverflow分析&#xff1a; protobuf Protocol Buffers&#xff0c;是Google公司开发的一种数据描述语…

数学学习记录

9月14日 1.映射&#xff1a; 2.函数: 9月15日 3.反函数&#xff1a; 4.收敛数列的性质 5.反三角函数&#xff1a; 9月16日 6.函数的极限&#xff1a; 7.无穷小和无穷大 极限运算法则&#xff1a;

远程Linux网络连接( Linux 网络操作系统 04)

接下来我们准备开始进入Linux操作系统的第二个模块的学习&#xff0c;不过在学习之前我们需要对如下进行简单的配置&#xff0c;通过外接辅助软件MobaXterm来进行虚拟操作系统的访问。接下来的课程我们会一直在MobaXterm中进行命令和相关知识的学习。 一、准备阶段 1.1 软件 …

学习笔记JVM篇(三)

一、垃圾回收机制 垃圾回收&#xff08;Garbage Collection&#xff09;机制&#xff0c;是自动回收无用对象从而释放内存的一种机制。Java之所以相对简单&#xff0c;很大程度是归功于垃圾回收机制。&#xff08;例如C语言申请内存后要手动的释放&#xff09; 优点&#xff…

数据清洗-缺失值填充-K-NN算法(K-Nearest Neighbors, K-NN算法)

目录 一、安装所需的python包二、采用K-NN算法进行缺失值填充2.1可直接运行代码2.2以某个缺失值数据进行实战2.2.1代码运行过程截屏&#xff1a;2.2.2填充后的数据截屏&#xff1a; 三、K 近邻算法 (K-Nearest Neighbors, KNN) 介绍3.1 K 近邻算法定义3.2 K 近邻算法的基本思想…

福建科立讯通信 指挥调度管理平台 SQL注入漏洞

北峰通信-福建科立讯通信 指挥调度管理平台 SQL注入漏洞 厂商域名和信息收集 域名&#xff1a; 工具sqlmap python sqlmap.py -u "http://ip:端口/api/client/down_file.php?uuid1" --batch 数据包 GET /api/client/down_file.php?uuid1%27%20AND%20(SELECT%20…

替换 Oracle ,江河信息用 TDengine 解决高基数查询写入问题

在数字经济快速发展的背景下&#xff0c;智慧水利作为重要的基础设施之一&#xff0c;正逐步成为提升水资源管理效率、优化生态环境的重要力量。江西省水投江河信息技术有限公司&#xff08;以下简称“江河信息”&#xff09;作为高新技术国有企业&#xff0c;坚定致力于打造数…