执行方法:
代码
"""
Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.Usage - sources:$ python detect.py --weights yolov5s.pt --source 0 # webcamimg.jpg # imagevid.mp4 # videoscreen # screenshotpath/ # directorylist.txt # list of imageslist.streams # list of streams'path/*.jpg' # glob'https://youtu.be/Zgi9g1ksQHc' # YouTube'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP streamUsage - formats:$ python detect.py --weights yolov5s.pt # PyTorchyolov5s.torchscript # TorchScriptyolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnnyolov5s_openvino_model # OpenVINOyolov5s.engine # TensorRTyolov5s.mlmodel # CoreML (macOS-only)yolov5s_saved_model # TensorFlow SavedModelyolov5s.pb # TensorFlow GraphDefyolov5s.tflite # TensorFlow Liteyolov5s_edgetpu.tflite # TensorFlow Edge TPUyolov5s_paddle_model # PaddlePaddle
"""import argparse
import os
import platform
import sys
from pathlib import Pathimport torchFILE = Path(__file__).resolve()
ROOT = FILE.parents[0]
if str(ROOT) not in sys.path:sys.path.append(str(ROOT))
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) from models.common import DetectMultiBackend
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import select_device, smart_inference_mode@smart_inference_mode()
def run(weights=ROOT / 'yolov5s.pt', source=ROOT / 'data/images', data=ROOT / 'data/coco128.yaml', imgsz=(640, 640), conf_thres=0.70, iou_thres=0.50, max_det=1000, device='0', view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=ROOT / 'runs/detect', name='exp', exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False, vid_stride=1,
):'''第一部分: 对source进行额外的判断'''source = str(source) save_img = not nosave and not source.endswith('.txt') is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file)screenshot = source.lower().startswith('screen')if is_url and is_file:source = check_file(source) '''第二部分: 新建保存结果的文件夹'''save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) (save_dir / 'label' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) '''第三部分:加载模型的权重'''device = select_device(device)model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)stride, names, pt = model.stride, model.names, model.ptimgsz = check_img_size(imgsz, s=stride) '''第四部分:加载待预测的图片'''bs = 1 if webcam:view_img = check_imshow(warn=True)dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)bs = len(dataset)elif screenshot:dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)else:dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)vid_path, vid_writer = [None] * bs, [None] * bs'''第五部分:执行模型的推理,产生预测结果,画出预测框'''model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) seen, windows, dt = 0, [], (Profile(), Profile(), Profile())for path, im, im0s, vid_cap, s in dataset:with dt[0]:im = torch.from_numpy(im).to(model.device)im = im.half() if model.fp16 else im.float() im /= 255 if len(im.shape) == 3:im = im[None] with dt[1]:visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else Falsepred = model(im, augment=augment, visualize=visualize)with dt[2]:'''最终得到[1,5,6,[类别]]1:是一个batch5:是将上万个检测框降低到5个检测框6: 目标的 x_left_up,y_left_up,x_right_down,y_right_down,置信度,目标所属类别()'''pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)'''遍历pred,遍历一个batch中的每个图片 '''for i, det in enumerate(pred): seen += 1 if webcam: p, im0, frame = path[i], im0s[i].copy(), dataset.counts += f'{i}: 'else:p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)p = Path(p) save_path = str(save_dir / p.name) txt_path = str(save_dir / 'label' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') s += '%gx%g ' % im.shape[2:] gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] imc = im0.copy() if save_crop else im0 annotator = Annotator(im0, line_width=line_thickness, example=str(names))if len(det):det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()for c in det[:, 5].unique():n = (det[:, 5] == c).sum() s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " for *xyxy, conf, cls in reversed(det):if save_txt: xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() line = (cls, *xywh, conf) if save_conf else (cls, *xywh) with open(f'{txt_path}.txt', 'a') as f:f.write(('%g ' * len(line)).rstrip() % line + '\n')if save_img or save_crop or view_img: c = int(cls) label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')annotator.box_label(xyxy, label, color=colors(c, True))if save_crop:save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)im0 = annotator.result()if view_img:if platform.system() == 'Linux' and p not in windows:windows.append(p)cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])cv2.imshow(str(p), im0)cv2.waitKey(1) if save_img:if dataset.mode == 'image':cv2.imwrite(save_path, im0)else: if vid_path[i] != save_path: vid_path[i] = save_pathif isinstance(vid_writer[i], cv2.VideoWriter):vid_writer[i].release() if vid_cap: fps = vid_cap.get(cv2.CAP_PROP_FPS)w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))else: fps, w, h = 30, im0.shape[1], im0.shape[0]save_path = str(Path(save_path).with_suffix('.mp4')) vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))vid_writer[i].write(im0)'''第六部分:打印输出信息'''LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")t = tuple(x.t / seen * 1E3 for x in dt) LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)if save_txt or save_img:s = f"\n{len(list(save_dir.glob('label/*.txt')))} label saved to {save_dir / 'label'}" if save_txt else ''LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")if update:strip_optimizer(weights[0]) def parse_opt():parser = argparse.ArgumentParser()parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path or triton URL')parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')parser.add_argument('--conf-thres', type=float, default=0.60, help='confidence threshold')parser.add_argument('--iou-thres', type=float, default=0.55, help='NMS IoU threshold')parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')parser.add_argument('--view-img', action='store_true', help='show results')parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt label')parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')parser.add_argument('--nosave', action='store_true', help='do not save images/videos')parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')parser.add_argument('--augment', action='store_true', help='augmented inference')parser.add_argument('--visualize', action='store_true', help='visualize features')parser.add_argument('--update', action='store_true', help='update all models')parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')parser.add_argument('--name', default='exp', help='save results to project/name')parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')parser.add_argument('--hide-labels', default=False, action='store_true', help='hide label')parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')opt = parser.parse_args()opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 print_args(vars(opt))return optdef main(opt):check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))run(**vars(opt))if __name__ == '__main__':opt = parse_opt()main(opt)