self-play RL学习笔记

让AI用随机的路径尝试新的任务,如果效果超预期,那就更新神经网络的权重,使得AI记住多使用这个成功的事件,再开始下一次的尝试。——llya Sutskever

这两天炸裂朋友圈的OpenAI草莓大模型o1和此前代码能力大幅升级的Claude 3.5,业内都猜测经过了自博弈强化学习(self-play RL)。

1、什么是self-play RL?

self-play RL的核心概念其实并不复杂。可以想象一场自我博弈的游戏,AI自己和自己“对打”,通过反复尝试、调整策略,逐步学习如何在特定环境中取得更好的结果。这种机制让AI能够像人类一样,不断进行探索与反思,以寻找更优解。

例如,AlphaGo正是依靠self-play RL,在无数场自我对弈中学会了如何打败人类顶尖棋手。通过这种不断的尝试、失败和进步,AI可以自主地提高自己的能力。

为了更好理解self-play RL,可以类比一下运动员的训练过程。一个马拉松运动员虽然掌握了基本的跑步技巧,但如果想要取得更好的成绩,必须通过反复训练来找到最适合自己的节奏、姿势、饮食等关键细节。在每次训练中,他会根据前一次的经验,做出调整,不断改进,直到达到最佳状态。

self-play RL的工作原理类似:AI不断在自己设计的场景中进行“训练”,每次调整策略,优化路径,最终取得最佳的决策能力。

2、self-play RL和LLM的关系

LLM,例如GPT系列,依靠海量的数据进行预训练,学习现有的知识和模式。但是,预训练的核心问题在于,AI只能“利用”这些已有的知识,缺乏“探索”新知识的能力。这也是现有LLM逐渐遇到瓶颈的原因之一。

self-play RL与LLM的结合,则为AI带来了突破性的新机会。它为模型提供了一种自主探索的能力,让它不再局限于预训练的框架内,能够通过模拟场景中的探索,自我生成新的数据,从而提升逻辑推理能力。这使得GPT-4以上更聪明的LLM有可能利用self-play RL,在一些任务上变得更加智能。

3、LLM和强化学习应该怎么相互补充?

LLM可以提供对环境的理解和解释能力,而强化学习可以在此基础上做出决策。例如,在自动驾驶汽车中,LLM可以解释交通标志和道路情况,而强化学习可以决定如何驾驶。同时,强化学习生成的决策可以通过LLM转换成自然语言,使得决策过程更加透明和易于理解。

在强化学习的训练过程中,LLM可以帮助智能体更好地与人类或其他智能体进行交流,从而提高学习效率。

4、self-play RL,它与传统的强化学习区别是什么?

经典三大范式(监督学习、非监督学习、强化学习)中只有强化学习的假设是让AI进行自主探索、连续决策,这个学习方式最接近人类的学习方式,也符合我们想象中的AI agent应该具备的自主行动能力。LLM在"利用"现有知识上做到了现阶段的极致,而在"探索"新知识方面还有很大潜力,RL的引入就是为了让LLM能通过探索进一步提升推理能力。

self-play RL是一种特殊类型的强化学习,它与传统的强化学习的主要区别在于学习过程中的互动方式。在传统的强化学习中,智能体(agent)通常与一个静态的环境互动,环境提供状态和奖励,智能体通过与环境的交互学习最优策略。而self-play RL中,智能体通常与自己或其他智能体进行博弈,例如在围棋、国际象棋或多人游戏中,智能体通过与自己的不同版本或策略进行对抗来学习,从而提高策略的性能。

在自博弈强化学习中,智能体通过模拟对抗来探索和改进策略,这种方法可以更有效地发现策略中的弱点和潜在的改进空间。自博弈强化学习的一个典型例子是AlphaGo,它通过与自身的不同版本进行大量的围棋对局来学习,最终超越了人类顶尖棋手。

5、self-play RL的机制

self-play RL的核心机制可以分为三个关键步骤:

  • 环境:AI所处的环境非常重要,比如下棋时的棋盘,或与用户对话的场景。AI通过与环境互动,收集关于其行为是否成功的反馈。
  • 智能体:AI是一个智能体,它可以做出决策和行动。它通过观察环境的反馈,调整自己的行为,以实现更高的目标。
  • 奖励机制:AI在完成任务时,会根据其表现收到“奖励”。这个奖励系统帮助AI判断自己做得是否好。比如,AI下棋时,接近胜利会得到正面的反馈,这种机制引导其选择更优的策略。

self-play RL的机制依靠不断的循环,智能体通过多次“自博弈”,优化自己的行动策略。这种自我驱动的学习方式,使得AI能够比单纯依赖预训练的模型在复杂场景中更具适应性和灵活性。

6、只有“聪明”的LLM才能进行self-play RL

一个非常关键的问题是,self-play RL并不是任何AI都可以执行的任务。正如你不能指望一个初学者在没有基础知识的情况下通过自己探索掌握高难度的技能,AI也是一样。只有GPT-4或以上这种聪明的大模型,具备足够的逻辑能力和推理基础,才能利用self-play RL进行有效的自我提升。

这一点类似于,你只有在拥有一定基础能力的情况下,才能通过自学和实践取得突破。因此,self-play RL在当前只有那些已经非常强大的LLM中才可能发挥作用,特别是当模型已经通过预训练掌握了足够的基础知识时,它才能在更复杂的任务中实现自主探索和提升。

7、范式转移与非共识

self-play RL通过让AI自己和自己进行博弈和反馈循环,能够显著提升AI的推理能力和任务完成能力。在大模型(如GPT-4)发展的道路上,它是一个关键的范式转移,标志着AI从单纯的知识“利用”向自主“探索”的方向前进,self-play RL开启了新赛道。

大部分人还没意识到,在纯靠语言模型预训练的Scaling Law这个经典物理规律遇到瓶颈后,多家硅谷明星公司已经把它们的资源重心押宝在一条新路径上:self-play RL。只不过,这个范式转移还未形成共识......

Reference

LLM新范式:OpenAIo1,self-playRL和AGI下半场

LLM的范式转移:RL带来新的ScalingLaw

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/879427.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于less和scss 循环生成css

效果 一、less代码 复制代码 item-count: 12; // 生成多少个 .item 类.item-loop(n) when (n > 0) {.icon{n} {background: url(../../assets/images/menu/icon{n}.png) no-repeat;background-size: 100% 100%;}.item-loop(n - 1);}.item-loop(item-count);二、scss代码 f…

【人工智能】Transformers之Pipeline(十七):文本分类(text-classification)

目录 一、引言 二、文本分类(text-classification) 2.1 概述 2.2 DistilBERT—BERT 的精简版:更小、更快、更便宜、更轻便 2.3 应用场景​​​​​​​ 2.4 pipeline参数 2.4.1 pipeline对象实例化参数 2.4.2 pipeline对象使用参数 …

【Hot100】LeetCode—287. 寻找重复数

目录 1- 思路题目识别快慢指针-类比链表判环 2- 实现⭐31. 下一个排列——题解思路 3- ACM 实现 原题链接:287. 寻找重复数 1- 思路 题目识别 识别1 :给定一个数组,寻找数组中的重复数。必须用 O(1) 的空间复杂度,且不能修改数组…

VMware Fusion Pro 13 Mac版虚拟机 安装Win11系统教程

Mac分享吧 文章目录 Win11安装完成,软件打开效果一、VMware安装Windows11虚拟机1️⃣:准备镜像2️⃣:创建虚拟机3️⃣:虚拟机设置4️⃣:安装虚拟机5️⃣:解决连不上网问题 安装完成!&#xff0…

fuxa搭建与使用(web组态)

1. 安装Node.js -> npm安装 参考网址:https://blog.csdn.net/WHF__/article/details/129362462 一、安装运行 C:\WINDOWS\system32>node -v v20.17.0 C:\WINDOWS\system32>npm -v 10.8.2 二、环境配置 在安装路径(D:\Program_Files\nodejs&a…

[数据集][目标检测]车油口挡板开关闭合检测数据集VOC+YOLO格式138张2类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):138 标注数量(xml文件个数):138 标注数量(txt文件个数):138 标注类别…

【2024.08】图模互补:知识图谱与大模型融合综述-笔记

阅读目的:假设已有一个知识图谱,如何利用图谱增强模型的问答,如何检索知识图谱、知识图谱与模型的文本如何相互交互、如何利用知识图谱增强模型回答的可解释性。 从综述中抽取感兴趣的论文进一步阅读。 来源:图模互补&#xff1…

Docker零基础入门

参考课程https://www.bilibili.com/video/BV1VC4y177re/?vd_source=b15169a302bee35f484245aecc69d4dd 参考书籍Docker 实践 - 面向 AI 开发人员的 Docker 实践 (dockerpractice.readthedocs.io) 1. 什么是Docker 1.1. Docker起源 随着计算机的发展,计算机上已经可以运行多…

CAN通讯常见错误纠正

CAN通讯常见错误 1.在使用CAN设备进行数据通讯时,有时候参数配置不当可能就会导致通讯的失败,如下图1所示,出现通信错误的原因是两个设备的波特率配置不一致导致。 图1 2.有时候在配置参数的时候,不能只关注波特率速度配置一致就…

Script-server: 一款开源的脚本管理工具,为你的Python脚本提供一个直观的 Web UI

在日常工作中,我们经常会使用各种脚本来自动化任务,提升效率。但传统的脚本管理方式往往伴随着一些困扰:复杂的命令行操作、难以理解的脚本参数、缺乏直观的反馈等等。这些问题,让原本应该便捷的脚本管理变得繁琐。 Script-server…

太速科技-基于XC7Z100+AD9361的双收双发无线电射频板卡

基于XC7Z100AD9361的双收双发无线电射频板卡 一、板卡概述 基于XC7Z100AD9361的双收双发无线电射频板卡是基于Xilinx ZYNQ FPGA和ADI的无线收发芯片AD9361开发的专用功能板卡,用于4G小基站,无线图传,数据收发等领域。 二、板卡…

QQ频道机器人零基础开发详解(基于QQ官方机器人文档)[第三期]

QQ频道机器人零基础开发详解(基于QQ官方机器人文档)[第三期] 第三期介绍:频道模块之频道成员 目录 QQ频道机器人零基础开发详解(基于QQ官方机器人文档)[第三期]第三期介绍:频道模块之频道成员获取子频道在线成员数获取频道成员列表获取频道身份组成员列…

Java项目: 基于SpringBoot+mybatis+maven课程答疑系统(含源码+数据库+毕业论文)

一、项目简介 本项目是一套基于SpringBootmybatismaven课程答疑系统 包含:项目源码、数据库脚本等,该项目附带全部源码可作为毕设使用。 项目都经过严格调试,eclipse或者idea 确保可以运行! 该系统功能完善、界面美观、操作简单、…

102.WEB渗透测试-信息收集-FOFA语法(2)

免责声明:内容仅供学习参考,请合法利用知识,禁止进行违法犯罪活动! 内容参考于: 易锦网校会员专享课 上一个内容:101.WEB渗透测试-信息收集-FOFA语法(1) FOFA使用实例 • title&q…

资深盘点:国内外知名的ERP管理系统厂商有哪些?

已经考虑引入ERP系统却担心面临以下问题?ERP系统流程僵化难以调整?流程与实际业务脱节?培训不到位、技术支持不及时导致难以实现全员使用、共创?市面上的ERP系统众多不知道如何选择? 今天就根据2024最新市场动态&…

ISAC: Toward Dual-Functional Wireless Networks for 6G and Beyond【论文阅读笔记】

此系列是本人阅读论文过程中的简单笔记,比较随意且具有严重的偏向性(偏向自己研究方向和感兴趣的),随缘分享,共同进步~ Integrated Sensing and Communications: Toward Dual-Functional Wireless Networks for 6G and…

react crash course 2024 (1)理论概念

state的作用 react hooks 而无需写一个class jsx 样式用 spa

决策树算法上篇

决策树概述 决策树是属于有监督机器学习的一种,起源非常早,符合直觉并且非常直观,模仿人类做决策的过程,早期人工智能模型中有很多应用,现在更多的是使用基于决策树的一些集成学习的算法。 示例一: 上表根据…

怎样在备忘录中添加提醒?怎么设置备忘录提醒

备忘录作为我们日常生活中常用的软件,其记录事项的便捷性已经得到了广泛认可。无论是工作计划、购物清单还是个人日记,备忘录都能帮助我们将这些信息快速记录下来。然而,如果备忘录能够进一步提供提醒功能,那么它将变得更加实用&a…

Facebook的虚拟现实功能简介:社交网络的新前沿

在科技飞速发展的今天,虚拟现实(VR)已经从科幻小说中的梦想变成了触手可及的现实。作为全球领先的社交平台,Facebook(现已更名为Meta)正大力推动虚拟现实技术的发展,以重新定义用户的社交体验。…