9.3、转换算子
9.3.1、基本转换算子
9.3.1.1、映射map
一一映射
package transform;import bean.WaterSensor;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;/*** @Title: MapDemo* @Author lizhe* @Package transform* @Date 2024/5/31 19:55* @description:*/
public class MapDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);DataStreamSource<WaterSensor> sensorDataStreamSource = env.fromElements(new WaterSensor("s1", 1L, 1),new WaterSensor("s2", 2L, 2),new WaterSensor("s3", 3L, 3));SingleOutputStreamOperator<Object> map = sensorDataStreamSource.map((v) -> {return v.getId();});map.print();env.execute();}
}
9.3.1.2、过滤
转换操作,对数据流进行过滤,通过布尔条件表达式设置过滤条件,true正常输出,false被过滤掉
package transform;import bean.WaterSensor;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;/*** @Title: MapDemo* @Author lizhe* @Package transform* @Date 2024/5/31 19:55* @description:* s1数据:一进一出* s2数据:一进二出* s3数据:一进零出*/
public class FilterDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);DataStreamSource<WaterSensor> sensorDataStreamSource = env.fromElements(new WaterSensor("s1", 1L, 1),new WaterSensor("s2", 2L, 2),new WaterSensor("s3", 3L, 3));SingleOutputStreamOperator<WaterSensor> filter = sensorDataStreamSource.filter((v) -> {return "s1".equals(v.getId());});filter.print();env.execute();}
}
9.3.1.3、扁平映射flatMap
将数据流中的整体拆分成个体使用。消费一个元素可产生多个元素。(一进多出)flatMap为flatten和map的结合,即按照某种规则对数据进行打散拆分,再对拆分后的元素做转换处理。
package transform;import bean.WaterSensor;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;/*** @Title: MapDemo* @Author lizhe* @Package transform* @Date 2024/5/31 19:55* @description:*/
public class FlatMapDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);DataStreamSource<WaterSensor> sensorDataStreamSource = env.fromElements(new WaterSensor("s1", 1L, 11),new WaterSensor("s2", 2L, 22),new WaterSensor("s3", 3L, 3));SingleOutputStreamOperator<String> flatmap = sensorDataStreamSource.flatMap(new FlatMapFunction<WaterSensor, String>() {@Overridepublic void flatMap(WaterSensor value, Collector<String> out) throws Exception {if ("s1".equals(value.getId())) {out.collect(String.valueOf(value.getVc()));} else if ("s2".equals(value.getId())) {out.collect(String.valueOf(value.getTs()));out.collect(String.valueOf(value.getVc()));}}});flatmap.print();env.execute();}
}
map使用的是return来控制一进一出,flatMap使用Collector,可调用多次采集器实现一进多出
9.3.1.4、聚合算子Aggregation
计算结果不仅依赖当前数据,还与之前的数据有关
-
按键分区keyby
DataStream没有直接聚合的API。在flink中要聚合先进行可以不用keyby分区。keyby通过指定key将一条流划分成不同的分区,分区就是并行处理的子任务。
package aggreagte;import bean.WaterSensor; import org.apache.flink.api.common.functions.FlatMapFunction; import org.apache.flink.api.java.functions.KeySelector; import org.apache.flink.streaming.api.datastream.DataStreamSource; import org.apache.flink.streaming.api.datastream.KeyedStream; import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.util.Collector;/*** @Title: MapDemo* @Author lizhe* @Package transform* @Date 2024/5/31 19:55* @description:* s1数据:一进一出* s2数据:一进二出* s3数据:一进零出*/ public class KeybyDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(2);DataStreamSource<WaterSensor> sensorDataStreamSource = env.fromElements(new WaterSensor("s1", 1L, 11),new WaterSensor("s1",11L,11),new WaterSensor("s2", 2L, 22),new WaterSensor("s3", 3L, 3));/** 按照id分组* 返回一个键控流KeyedStream,keyBy不是算子* keyby分组与分区的关系:* 1)keyby对数据进行分组,保证相同key的数据在同一个分区* 2)分区:一个子任务可以理解为一个分区,一个分区(子任务)中可以存在多个分组(key)* */KeyedStream<WaterSensor, String> keyBy = sensorDataStreamSource.keyBy(new KeySelector<WaterSensor, String>() {@Overridepublic String getKey(WaterSensor value) throws Exception {return value.getId();}});keyBy.print();env.execute();} }
-
简单聚合
按键分区后可以进行聚合操作,基本的API包括:sum、min、max、minBy、maxBy。
sum
package aggreagte;import bean.WaterSensor; import org.apache.flink.api.java.functions.KeySelector; import org.apache.flink.streaming.api.datastream.DataStreamSource; import org.apache.flink.streaming.api.datastream.KeyedStream; import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;public class SimpleAggDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);DataStreamSource<WaterSensor> sensorDataStreamSource = env.fromElements(new WaterSensor("s1", 1L, 11),new WaterSensor("s1", 11L, 11),new WaterSensor("s2", 2L, 22),new WaterSensor("s3", 3L, 3));/** 按照id分组* 返回一个键控流KeyedStream,keyBy不是算子* keyby分组与分区的关系:* 1)keyby对数据进行分组,保证相同key的数据在同一个分区* 2)分区:一个子任务可以理解为一个分区,一个分区(子任务)中可以存在多个分组(key)* */KeyedStream<WaterSensor, String> keyBy = sensorDataStreamSource.keyBy(new KeySelector<WaterSensor, String>() {@Overridepublic String getKey(WaterSensor value) throws Exception {return value.getId();}});//传位置索引适用于tuple类型,不适合pojo类型 // SingleOutputStreamOperator<WaterSensor> result = keyBy.sum(2);SingleOutputStreamOperator<WaterSensor> sum = keyBy.sum("vc");sum.print();// SingleOutputStreamOperator<WaterSensor> max = keyBy.max("vc"); // max.print();// SingleOutputStreamOperator<WaterSensor> maxBy = keyBy.maxBy("vc"); // maxBy.print();env.execute();} }
max
package aggreagte;import bean.WaterSensor; import org.apache.flink.api.java.functions.KeySelector; import org.apache.flink.streaming.api.datastream.DataStreamSource; import org.apache.flink.streaming.api.datastream.KeyedStream; import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;public class SimpleAggDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);DataStreamSource<WaterSensor> sensorDataStreamSource = env.fromElements(new WaterSensor("s1", 1L, 1),new WaterSensor("s1", 11L, 11),new WaterSensor("s2", 2L, 22),new WaterSensor("s3", 3L, 3));/** 按照id分组* 返回一个键控流KeyedStream,keyBy不是算子* keyby分组与分区的关系:* 1)keyby对数据进行分组,保证相同key的数据在同一个分区* 2)分区:一个子任务可以理解为一个分区,一个分区(子任务)中可以存在多个分组(key)* */KeyedStream<WaterSensor, String> keyBy = sensorDataStreamSource.keyBy(new KeySelector<WaterSensor, String>() {@Overridepublic String getKey(WaterSensor value) throws Exception {return value.getId();}});//传位置索引适用于tuple类型,不适合pojo类型 // SingleOutputStreamOperator<WaterSensor> result = keyBy.sum(2); // SingleOutputStreamOperator<WaterSensor> sum = keyBy.sum("vc"); // sum.print();SingleOutputStreamOperator<WaterSensor> max = keyBy.max("vc");max.print();// SingleOutputStreamOperator<WaterSensor> maxBy = keyBy.maxBy("vc"); // maxBy.print();env.execute();} }
输出结果:
WaterSensor{id='s1', ts=1, vc=1} WaterSensor{id='s1', ts=1, vc=11} WaterSensor{id='s2', ts=2, vc=22} WaterSensor{id='s3', ts=3, vc=3}
maxby
package aggreagte;import bean.WaterSensor; import org.apache.flink.api.java.functions.KeySelector; import org.apache.flink.streaming.api.datastream.DataStreamSource; import org.apache.flink.streaming.api.datastream.KeyedStream; import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;public class SimpleAggDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);DataStreamSource<WaterSensor> sensorDataStreamSource = env.fromElements(new WaterSensor("s1", 1L, 1),new WaterSensor("s1", 11L, 11),new WaterSensor("s2", 2L, 22),new WaterSensor("s3", 3L, 3));/** 按照id分组* 返回一个键控流KeyedStream,keyBy不是算子* keyby分组与分区的关系:* 1)keyby对数据进行分组,保证相同key的数据在同一个分区* 2)分区:一个子任务可以理解为一个分区,一个分区(子任务)中可以存在多个分组(key)* */KeyedStream<WaterSensor, String> keyBy = sensorDataStreamSource.keyBy(new KeySelector<WaterSensor, String>() {@Overridepublic String getKey(WaterSensor value) throws Exception {return value.getId();}});//传位置索引适用于tuple类型,不适合pojo类型 // SingleOutputStreamOperator<WaterSensor> result = keyBy.sum(2); // SingleOutputStreamOperator<WaterSensor> sum = keyBy.sum("vc"); // sum.print();// SingleOutputStreamOperator<WaterSensor> max = keyBy.max("vc"); // max.print();SingleOutputStreamOperator<WaterSensor> maxBy = keyBy.maxBy("vc");maxBy.print();env.execute();} }
输出结果
WaterSensor{id='s1', ts=1, vc=1} WaterSensor{id='s1', ts=11, vc=11} WaterSensor{id='s2', ts=2, vc=22} WaterSensor{id='s3', ts=3, vc=3}
max与maxby对比(min与minby同理):
max只会取比较字段的最大值,非比较字段保留第一次的值
maxby会取比较字段最大值这个对象
-
规约函数Reduce
reduce:两两聚合,每个key第一条数据直接存起来并输出,聚合的结果作为下一次的第一条数据
package aggreagte;import bean.WaterSensor; import org.apache.flink.api.common.functions.ReduceFunction; import org.apache.flink.api.java.functions.KeySelector; import org.apache.flink.streaming.api.datastream.DataStreamSource; import org.apache.flink.streaming.api.datastream.KeyedStream; import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;public class ReduceDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);DataStreamSource<WaterSensor> sensorDataStreamSource = env.fromElements(new WaterSensor("s1", 1L, 1),new WaterSensor("s1", 11L, 11),new WaterSensor("s1", 22L, 22),new WaterSensor("s2", 2L, 22),new WaterSensor("s3", 3L, 3));/** 按照id分组* 返回一个键控流KeyedStream,keyBy不是算子* keyby分组与分区的关系:* 1)keyby对数据进行分组,保证相同key的数据在同一个分区* 2)分区:一个子任务可以理解为一个分区,一个分区(子任务)中可以存在多个分组(key)* */KeyedStream<WaterSensor, String> keyBy = sensorDataStreamSource.keyBy(new KeySelector<WaterSensor, String>() {@Overridepublic String getKey(WaterSensor value) throws Exception {return value.getId();}});SingleOutputStreamOperator<WaterSensor> reduce = keyBy.reduce(new ReduceFunction<WaterSensor>() {@Overridepublic WaterSensor reduce(WaterSensor value1, WaterSensor value2) throws Exception {System.out.println("value1="+value1);System.out.println("value2="+value2);return new WaterSensor(value1.id, value2.ts, value1.vc + value2.vc);}});reduce.print();env.execute();} }
9.3.1.5、自定义函数及分区
自定义函数分为:函数类、匿名函数、富函数类
物理分区即数据进入到多个线程中的哪个线程。常见分区策略:随机分配、轮询分配、重缩放、广播。
轮询(rebalance):一般一个source对应一个kafka的partition,如果partition数据源不均匀(数据倾斜),可通过轮询分配进行负载均衡。
缩放(rescale):实现轮询,局部组队,比rebalance高效。
广播(broadcast):下发到下游所有子任务
9.3.1.6、分流
将一条数据拆分成完全独立的两条或多条流。基于一个DataStream通过筛选条件将符合条件的数据放到对应的流里。
只要针对同一条流进行多次独立调用filter()方法进行筛选就可以得到拆分之后的流,但是效率较低,所有数据都要过滤多次。
package split;import bean.WaterSensor;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;public class SplitByFilterDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);DataStreamSource<String> dataStreamSource = env.socketTextStream("192.168.132.101", 7777);dataStreamSource.filter(value -> Integer.parseInt(value)%2==0).print("偶数流");dataStreamSource.filter(value -> Integer.parseInt(value) % 2 == 1).print("奇数流");env.execute();}
}
使用侧输出流实现分流,可实现数据筛选、告警等
- 使用process算子
- 定义OutputTag对象
- 调用ctx.output
- 通过主流获取侧输出流
package split;import bean.WaterSensor;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.util.Collector;
import org.apache.flink.util.OutputTag;import java.lang.reflect.Type;public class SideOutputDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);//如果是s1放到侧输出流s1中OutputTag<WaterSensor> s1 = new OutputTag<>("s1", Types.POJO(WaterSensor.class));//如果是s2放到侧输出流s2中OutputTag<WaterSensor> s2 = new OutputTag<>("s2", Types.POJO(WaterSensor.class));SingleOutputStreamOperator<WaterSensor> dataStreamSource = env.socketTextStream("192.168.132.101", 7777).map(value ->{String[] datas = value.split(",");return new WaterSensor(datas[0],Long.parseLong(datas[1]),Integer.parseInt(datas[2]) );} );SingleOutputStreamOperator<WaterSensor> process = dataStreamSource.process(new ProcessFunction<WaterSensor, WaterSensor>() {@Overridepublic void processElement(WaterSensor value, Context ctx, Collector<WaterSensor> out) throws Exception {String id = value.getId();if (id.equals("s1")) {ctx.output(s1, value);} else if (id.equals("s2")) {ctx.output(s2, value);} else {//其他放到主流中out.collect(value);}}});//打印主输出流process.print("主输出流");//打印侧输出流process.getSideOutput(s1).print("s1侧输出流");process.getSideOutput(s2).print("s2侧输出流");env.execute();}
}
9.3.1.7、合流
1、联合union
最简单的合流操作就是将多条流合到一起,要求流中的数据类型必须相同,合并后新流包括所有流的元素,数据类型不变,一次可以合并多条流。
package combineDemo;import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;public class UnionDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);DataStreamSource<Integer> source1 = env.fromElements(1, 2, 3, 4, 5);DataStreamSource<Integer> source2 = env.fromElements(11, 22, 33, 44, 55);DataStreamSource<String> source3 = env.fromElements("111", "222","333","444","555");DataStream<Integer> union = source1.union(source2).union(source3.map(value -> Integer.parseInt(value)));union.print();env.execute();}
}
2、连接connect
为合并不同数据类型的数据flink提供connect合流操作。connect连接后得到的是ConnectedStream,形式上统一但内部内部各自数据形式不变,彼此之间相互独立。如要得到新的DataStream要使用“同处理”(co-process),如map、flatmap等,各自处理各自的。
connect一次只能连接两条流。
package combineDemo;import org.apache.flink.streaming.api.datastream.ConnectedStreams;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.CoMapFunction;public class ConnectDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);DataStreamSource<Integer> source1 = env.fromElements(1, 2, 3, 4, 5);DataStreamSource<String> source2 = env.fromElements("111", "222","333","444","555");ConnectedStreams<Integer, String> connect = source1.connect(source2);SingleOutputStreamOperator<String> map = connect.map(new CoMapFunction<Integer, String, String>() {@Overridepublic String map1(Integer value) throws Exception {return value.toString();}@Overridepublic String map2(String value) throws Exception {return value;}});map.print();env.execute();}
}
ConnectedStreams可以直接调用keyBy()进行按键分区得到的还是一个ConnectedStreams,通过keyBy()将两条流中key相同的数据放到了一起,然后针对来源的流再各自处理。(类似inner join)
package combineDemo;import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.datastream.ConnectedStreams;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.CoMapFunction;
import org.apache.flink.streaming.api.functions.co.CoProcessFunction;
import org.apache.flink.util.Collector;import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;public class ConnectKeybyDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(2);DataStreamSource<Tuple2<Integer, String>> source1 = env.fromElements(Tuple2.of(1, "a1"),Tuple2.of(1, "a2"),Tuple2.of(2, "b"),Tuple2.of(3, "c"));DataStreamSource<Tuple3<Integer, String,Integer>> source2 = env.fromElements(Tuple3.of(1, "aa1",1),Tuple3.of(1, "aa2",2),Tuple3.of(2, "bb",1),Tuple3.of(3, "cc",1));ConnectedStreams<Tuple2<Integer, String>, Tuple3<Integer, String, Integer>> connect = source1.connect(source2);//多并行度下,要根据关联条件进行keyby,才能保证key相同的数据在一个子任务(线程)里,这样才能匹配上ConnectedStreams<Tuple2<Integer, String>, Tuple3<Integer, String, Integer>> keyBy = connect.keyBy(s1 -> s1.f0, s2 -> s2.f0);SingleOutputStreamOperator<String> process = keyBy.process(new CoProcessFunction<Tuple2<Integer, String>, Tuple3<Integer, String, Integer>, String>() {//每条流定一个hashmap用来存储数据Map<Integer, List<Tuple2<Integer, String>>> s1Cache = new HashMap<>();Map<Integer, List<Tuple3<Integer, String, Integer>>> s2Cache = new HashMap<>();@Overridepublic void processElement1(Tuple2<Integer, String> value, Context ctx, Collector<String> out) throws Exception {Integer id = value.f0;//先把s1数据存到map中if(!s1Cache.containsKey(id)){ArrayList<Tuple2<Integer, String>> s1Value = new ArrayList<>();s1Value.add(value);s1Cache.put(id, s1Value);}else {s1Cache.get(id).add(value);}if (s2Cache.containsKey(id)){for (Tuple3<Integer, String, Integer> s2Element : s2Cache.get(id)) {out.collect("s1"+value+"---------"+"s2"+s2Element);}}}@Overridepublic void processElement2(Tuple3<Integer, String, Integer> value, Context ctx, Collector<String> out) throws Exception {Integer id = value.f0;//先把s1数据存到map中if(!s2Cache.containsKey(id)){ArrayList<Tuple3<Integer, String, Integer>> s2Value = new ArrayList<>();s2Value.add(value);s2Cache.put(id, s2Value);}else {s2Cache.get(id).add(value);}if (s1Cache.containsKey(id)){for (Tuple2<Integer, String> s1Element : s1Cache.get(id)) {out.collect("s1"+s1Element+"---------"+"s2"+value);}}}});process.print();env.execute();}
}
9.4、输出算子sink
将计算结果写到外部存储
输出到外部系统参考官网。
9.4.1、输出到文件FileSink
package sink;import org.apache.flink.api.common.serialization.SimpleStringEncoder;
import org.apache.flink.api.connector.sink.Sink;
import org.apache.flink.configuration.MemorySize;
import org.apache.flink.connector.file.sink.FileSink;
import org.apache.flink.core.fs.Path;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.filesystem.DefaultBucketFactoryImpl;
import org.apache.flink.streaming.api.functions.sink.filesystem.OutputFileConfig;
import org.apache.flink.streaming.api.functions.sink.filesystem.bucketassigners.DateTimeBucketAssigner;
import org.apache.flink.streaming.api.functions.sink.filesystem.rollingpolicies.DefaultRollingPolicy;import java.time.Duration;
import java.time.ZoneId;
import java.util.concurrent.TimeUnit;public class SinkFile {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);//必须开启,否则文件一直是.inprogressenv.enableCheckpointing(2000, CheckpointingMode.EXACTLY_ONCE);DataStreamSource<String> source = env.fromElements("111", "222","333","444","555");FileSink<String> sink = FileSink//官网示例.forRowFormat(new Path("f:/tmp"), new SimpleStringEncoder<String>("UTF-8")).withRollingPolicy(DefaultRollingPolicy.builder().withRolloverInterval(TimeUnit.MINUTES.toSeconds(5))
// .withInactivityInterval(TimeUnit.MINUTES.toMillis(5)).withMaxPartSize(1024L).build()).build();// FileSink<String> fileSink = FileSink
// //输出行式存储文件
// .<String>forRowFormat(new Path("f:/tmp"), new SimpleStringEncoder<>())
// //输出文件配置
// .withOutputFileConfig(
// OutputFileConfig.builder()
// .withPartPrefix("test")
// .withPartSuffix(".log")
// .build()
// )
// //文件分桶
// .withBucketAssigner(new DateTimeBucketAssigner<>("yy-MM-dd", ZoneId.systemDefault()))
// //文件滚动策略
// .withRollingPolicy(DefaultRollingPolicy.builder()
// .withRolloverInterval(5L * 1000L)
// .withMaxPartSize(1L * 1024L)
// .build()
// ).build();source.sinkTo(sink);env.execute();}
}
9.4.2、输出到kafka
参考官网:https://nightlies.apache.org/flink/flink-docs-release-1.13/docs/connectors/datastream/kafka/
package sink;import bean.WaterSensor;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
import org.apache.flink.streaming.connectors.kafka.KafkaSerializationSchema;
import org.apache.flink.streaming.connectors.kafka.table.KafkaSinkSemantic;
import org.apache.kafka.clients.producer.ProducerRecord;import java.nio.charset.StandardCharsets;
import java.util.Properties;public class SinkKafkaDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();;Properties properties = new Properties();properties.setProperty("bootstrap.servers", "192.168.132.100:9092,192.168.132.101:9092,192.168.132.102:9092");SingleOutputStreamOperator<WaterSensor> dataStreamSource = env.socketTextStream("192.168.132.101", 7777).map(value ->{String[] datas = value.split(",");return new WaterSensor(datas[0],Long.parseLong(datas[1]),Integer.parseInt(datas[2]) );} );KafkaSerializationSchema<WaterSensor> serializationSchema = new KafkaSerializationSchema<WaterSensor>() {@Overridepublic ProducerRecord<byte[], byte[]> serialize(WaterSensor s,Long time ) {return new ProducerRecord<>("test", // target topics.toString().getBytes(StandardCharsets.UTF_8)); // record contents}};dataStreamSource.addSink(new FlinkKafkaProducer<WaterSensor>("test",serializationSchema,properties,FlinkKafkaProducer.Semantic.EXACTLY_ONCE));env.execute();}
}![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/c12239189c82417f8d17f9f8312dcf97.png)##### 9.4.3、输出到MySQL参考官网:https://nightlies.apache.org/flink/flink-docs-release-1.13/docs/connectors/datastream/jdbc/```java
package sink;import bean.WaterSensor;
import org.apache.flink.connector.jdbc.JdbcConnectionOptions;
import org.apache.flink.connector.jdbc.JdbcExecutionOptions;
import org.apache.flink.connector.jdbc.JdbcSink;
import org.apache.flink.connector.jdbc.JdbcStatementBuilder;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.sink.SinkFunction;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
import org.apache.flink.streaming.connectors.kafka.KafkaSerializationSchema;
import org.apache.kafka.clients.producer.ProducerRecord;import java.nio.charset.StandardCharsets;
import java.sql.PreparedStatement;
import java.sql.SQLException;
import java.util.Properties;public class SinkMysqlDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();;env.setParallelism(1);SingleOutputStreamOperator<WaterSensor> dataStreamSource = env.socketTextStream("192.168.132.101", 7777).map(value ->{String[] datas = value.split(",");return new WaterSensor(datas[0],Long.parseLong(datas[1]),Integer.parseInt(datas[2]) );} );dataStreamSource.print();SinkFunction<WaterSensor> waterSensorSinkFunction = JdbcSink.sink("insert into ws (id,ts,vc) values (?, ?, ?)", // mandatorynew JdbcStatementBuilder<WaterSensor>() {@Overridepublic void accept(PreparedStatement preparedStatement, WaterSensor waterSensor) throws SQLException {preparedStatement.setString(1, waterSensor.id);preparedStatement.setLong(2, waterSensor.ts);preparedStatement.setInt(3, waterSensor.vc);}}, // mandatoryJdbcExecutionOptions.builder().withBatchSize(1000).withBatchIntervalMs(200).withMaxRetries(5).build(), // optionalnew JdbcConnectionOptions.JdbcConnectionOptionsBuilder().withUrl("jdbc:mysql://localhost:3306/testflink?" +"autoReconnect=true&useUnicode=true&characterEncoding=UTF-8&serverTimezone=Asia/Shanghai")
// .withDriverName("org.Mysql.Driver").withUsername("root").withPassword("123").withConnectionCheckTimeoutSeconds(60).build() // mandatory);dataStreamSource.addSink(waterSensorSinkFunction);env.execute();}
}
10、时间和窗口
窗口一般是划定的一段时间范围,即时间窗。窗口本事是截取有界数据的一种方式,对这个范围内的数据进行处理。
10.1、窗口分类
- 按照驱动类型分:时间窗口(定点发车)、计数窗口(人齐发车)
- 按照窗口分配数据的规则分:滚动窗口、滑动窗口、会话窗口、全局窗口
10.2、窗口API概述
按键分区和非按键分区
1、按键分区
按键分区后数据流被key分成多条逻辑流KeyedStream,窗口计算会在多个并行子任务上同时执行。相同key的数据会在一个子任务中,相当于每个key都定义了一组窗口各自独立进行统计计算。
2、非按键分区
原始流dataStreamSource不会分成多条逻辑流,窗口逻辑只能在一个任务上执行,相当于并行度为1。
10.3、窗口分配器
Window Assigners 是构建窗口算子的第一步,用来定义数据被分配到哪个窗口,即指定窗口的类型。一般使用.window()方法,传入Window Assigners参数,返回WindowedStream。非按键分区使用.windowAll(),返回AllWindowedStream.
基于时间:
-
按键分区滚动窗口,窗口长度2秒
keyedStream.window(TumblingProcessingTimeWindows.of(Time.seconds(2)));
-
按键分区滑动时间窗口,窗口长度10s,滑动步长2s
keyedStream.window(SlidingProcessingTimeWindows.of(Time.seconds(10),Time.seconds(2)));
-
按键分区会话窗口,窗口长度2s
keyedStream.window(ProcessingTimeSessionWindows.withGap(Time.seconds(2)));
基于计数:
-
按键分区滚动窗口,窗口长度为5个元素
keyedStream.countWindow(5);
-
按键分区滑动窗口,窗口长度5个元素,滑动步长2个元素
keyedStream.countWindow(5,2);
10.4、窗口函数
窗口分配器只收集数据,窗口函数Window Function进行计算操作。
各种流的相互关系
- 增量聚合:来一条算一条,窗口触发时输出计算结果
- 全窗口函数:数据来了不计算先存上,等窗口触发时计算并输出结果
10.4.1、增量聚合函数
每来一个数据就聚合一次
1、归约函数ReduceFunction
相同key的第一条数据来的时候不会调用reduce方法,来一条数据就算一条,窗口触发输出计算结果
package window;import bean.WaterSensor;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;public class WindowAPIDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();;env.setParallelism(1);SingleOutputStreamOperator<WaterSensor> dataStreamSource = env.socketTextStream("192.168.132.101", 7777).map(value ->{String[] datas = value.split(",");return new WaterSensor(datas[0],Long.parseLong(datas[1]),Integer.parseInt(datas[2]) );} );KeyedStream<WaterSensor, String> keyedStream = dataStreamSource.keyBy(value -> value.getId());WindowedStream<WaterSensor, String, TimeWindow> windowStream = keyedStream.window(TumblingProcessingTimeWindows.of(Time.seconds(10)));SingleOutputStreamOperator<WaterSensor> reduce = windowStream.reduce(new ReduceFunction<WaterSensor>() {@Overridepublic WaterSensor reduce(WaterSensor value1, WaterSensor value2) throws Exception {return new WaterSensor(value1.id, value2.ts, value1.vc + value2.vc);}});reduce.print();env.execute();}
}
2、聚合函数Aggregate Function
ReduceFunction能解决大多归约聚合问题,但聚合状态类型、输出结果类型和输入数据类型必须一样。Aggregate Function更加灵活,有三种类型:输入IN、累加器ACC、输出OUT。输入IN是输入流中元素的数据类型;累加器类型ACC是聚合中间状态类型;输出OUT是最终计算结果类型。
- 第一条数据来创建窗口和累加器
- 增量聚合:来一条算一条(调用一次add方法)
- 窗口输出调用一次getresult方法
- 输入、输出、中间累加器的类型可以不一样
package window;import bean.WaterSensor;
import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.ProcessingTimeSessionWindows;
import org.apache.flink.streaming.api.windowing.assigners.SlidingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;public class WindowAggregateDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();;env.setParallelism(1);SingleOutputStreamOperator<WaterSensor> dataStreamSource = env.socketTextStream("192.168.132.101", 7777).map(value ->{String[] datas = value.split(",");return new WaterSensor(datas[0],Long.parseLong(datas[1]),Integer.parseInt(datas[2]) );} );KeyedStream<WaterSensor, String> keyedStream = dataStreamSource.keyBy(value -> value.getId());WindowedStream<WaterSensor, String, TimeWindow> window = keyedStream.window(TumblingProcessingTimeWindows.of(Time.seconds(10)));SingleOutputStreamOperator<String> aggregate = window.aggregate(new AggregateFunction<WaterSensor, Integer, String>() {@Overridepublic Integer createAccumulator() {System.out.println("初始化累加器");return 0;}@Overridepublic Integer add(WaterSensor value, Integer accumulator) {System.out.println("调用add");return value.vc + accumulator;}@Overridepublic String getResult(Integer accumulator) {System.out.println("输出结果");return accumulator.toString();}@Overridepublic Integer merge(Integer a, Integer b) {//只有会话窗口才用return null;}});aggregate.print();env.execute();}
}
10.4.2、全窗口函数
1、窗口函数
.apply(),但是该方法能提供的上下文信息比较少,已经被ProcessWindowFunction全覆盖
window.apply(new WindowFunction<WaterSensor, String, String, TimeWindow>() {@Overridepublic void apply(String key, TimeWindow window, Iterable<WaterSensor> input, Collector<String> out) throws Exception {}});
2、处理窗口函数
ProcessWindowFunction除了能拿到窗口数据外还能获取上下文对象。上下文包括窗口信息、当前的时间和状态信息(处理时间、事件时间水位线)
窗口触发时才调用一次,统一计算窗口内的所有数据
package window;import bean.WaterSensor;
import org.apache.commons.lang3.time.DateFormatUtils;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.ProcessingTimeSessionWindows;
import org.apache.flink.streaming.api.windowing.assigners.SlidingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;public class WindowProcessDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();;env.setParallelism(1);SingleOutputStreamOperator<WaterSensor> dataStreamSource = env.socketTextStream("192.168.132.101", 7777).map(value ->{String[] datas = value.split(",");return new WaterSensor(datas[0],Long.parseLong(datas[1]),Integer.parseInt(datas[2]) );} );KeyedStream<WaterSensor, String> keyedStream = dataStreamSource.keyBy(value -> value.getId());
// dataStreamSource.windowAll();WindowedStream<WaterSensor, String, TimeWindow> window = keyedStream.window(TumblingProcessingTimeWindows.of(Time.seconds(10)));SingleOutputStreamOperator<String> process = window.process(new ProcessWindowFunction<WaterSensor, String, String, TimeWindow>() {@Overridepublic void process(String key, Context context, Iterable<WaterSensor> elements, Collector<String> out) throws Exception {long start = context.window().getStart();long end = context.window().getEnd();String winStart = DateFormatUtils.format(start, "yyyy-MM-dd HH:mm:ss.SSS");String winEnd = DateFormatUtils.format(end, "yyyy-MM-dd HH:mm:ss.SSS");long l = elements.spliterator().estimateSize();out.collect("key=" + key + "的窗口[" + winStart + "," + winEnd + "]包含" + l + "条数据" + elements.toString());}});process.print();env.execute();}
}
10.4.3、增量聚合与全窗口函数接合使用
增量聚合Aggregate+全窗口的ProcessWindow
- 增量聚合函数处理数据:来一条算一条
- 窗口触发时,增量聚合结果(只有一条数据)传给全窗口函数
- 经过全窗口函数的处理后输出
从而实现了两者的优点(reduce函数也能传全窗口函数)
- 增量聚合:来一条算一条只存储中间计算结果,占用空间少
- 全窗口函数:可以通过上下文实现灵活的功能
package window;import bean.WaterSensor;
import org.apache.commons.lang3.time.DateFormatUtils;
import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.datastream.WindowedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;public class WindowAggregateAndProcessDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();;env.setParallelism(1);SingleOutputStreamOperator<WaterSensor> dataStreamSource = env.socketTextStream("192.168.132.101", 7777).map(value ->{String[] datas = value.split(",");return new WaterSensor(datas[0],Long.parseLong(datas[1]),Integer.parseInt(datas[2]) );} );KeyedStream<WaterSensor, String> keyedStream = dataStreamSource.keyBy(value -> value.getId());WindowedStream<WaterSensor, String, TimeWindow> window = keyedStream.window(TumblingProcessingTimeWindows.of(Time.seconds(10)));SingleOutputStreamOperator<String> outputStreamOperator = window.aggregate(new MyAgg(), new MyProcess());outputStreamOperator.print();env.execute();}public static class MyAgg implements AggregateFunction<WaterSensor, Integer, String>{@Overridepublic Integer createAccumulator() {System.out.println("初始化累加器");return 0;}@Overridepublic Integer add(WaterSensor value, Integer accumulator) {System.out.println("调用add");return value.vc + accumulator;}@Overridepublic String getResult(Integer accumulator) {System.out.println("输出结果");return accumulator.toString();}@Overridepublic Integer merge(Integer a, Integer b) {//只有会话窗口才用return null;}}public static class MyProcess extends ProcessWindowFunction<String, String, String, TimeWindow> {@Overridepublic void process(String key, Context context, Iterable<String> elements, Collector<String> out) throws Exception {long start = context.window().getStart();long end = context.window().getEnd();String winStart = DateFormatUtils.format(start, "yyyy-MM-dd HH:mm:ss.SSS");String winEnd = DateFormatUtils.format(end, "yyyy-MM-dd HH:mm:ss.SSS");long l = elements.spliterator().estimateSize();out.collect("key=" + key + "的窗口[" + winStart + "," + winEnd + "]包含" + l + "条数据" + elements.toString());}}
}
10.5、小结
触发器、移除器:现成的几个窗口都有默认的实现,一般不需要定义
以时间滚动窗口为例:
-
窗口什么时候触发输出:时间进展>=窗口的最大时间戳(end-1ms)
-
窗口是怎么划分的:start=取窗口长度的整数倍,向下取整,end=start+窗口长度,窗口左闭右开[start,end)
-
窗口生命周期:
创建:属于本窗口的第一条数据来的时候现new的,放入一个singleton单例的集合中;
销毁(关窗):时间进展>=窗口的最大时间戳(end-1ms)+允许迟到时间(默认为0)