AI学习记录 - 旋转位置编码

创作不易,有用点赞,写作有利于锻炼一门新的技能,有很大一部分是我自己总结的新视角

1、前置条件:要理解旋转位置编码前,要熟悉自注意力机制,否则很难看得懂,在我的系列文章中有对自注意力机制的画图解释。

先说重要的结论(下面 q向量 和 k向量 是自注意力矩阵诞生的,不懂先去看注意力机制):

结论1:旋转位置编码本身是绝对位置编码,但是和自注意力机制中的一个qk向量结合之后,就变成了相对位置编码。因为自注意力机制中qk会计算点积,正是恰好这个内积,顺带把旋转位置编码变成了相对位置编码,所以一般说旋转位置编码既包含了绝对位置编码含义,也包含了相对位置编码含义。
结论2:假设没有位置编码这个东西,自注意力机制中,qk向量进行内积的时候,经过反向传播,会逐渐得出词汇与词汇的关联度矩阵,假设10个词汇计算内积,当两个词汇关联度越高,这两个词汇的内积(q * k)越大,重点来了:当对q 和 k叠加上旋转位置编码之后,那不仅仅是两个词汇关联度越高,内积越大,并且当两个词汇位置距离越近,内积也越大。
结论3:原来词向量跟词向量的内积大小只跟词汇的语义相关,内积越大,两个词汇的语义关联度越高。叠加上旋转位置编码后,距离相近的词向量内积也大。当一个句子中,两个词汇距离很远但是语义强相关,那他们的内积就是大;当两个词汇语义没啥关联但是距离很近,内积也是大;当两个词汇距离又近,语义有强相关,内积就是大大的。

2、经过上面的结论,其实我们知道了旋转位置编码在哪个位置起到的作用,就是得出 q 和 k 向量之后。

在说旋转位置编码怎么旋转之前,数学界已经就有了怎么对一个向量进行旋转,举个例子

在这里插入图片描述

如果你本身对位置编码不熟悉,在了解旋转位置编码之前,建议先去看我的另一篇博客,有个传统绝对位置编码的解释,旋转位置编码在没和qk叠加之前,其实和绝对位置编码差不多,你会发现他们的公式在某些地方非常的接近。如果这个所谓的旋转位置编码和传统绝对位置编码通过一样的方式叠加到词向量上面,旋转位置编码还是一个绝对位置编码,关键在于叠加方式不一样。当然传统位置编码使用旋转位置编码的叠加方式,也没有产生相对位置含义,所以旋转位置编码的计算公式和他的叠加方式是相互相成的。
传统绝对位置编码公式:

在这里插入图片描述

旋转位置编码公式:

在这里插入图片描述

3、上面知道如果向量需要旋转,其实需要一个二维向量,但是 q 和 k 都是一维向量,怎么办呢,通过如下叠加,把 q 和 k 向量都按照如下图所示变成二维向量:

在这里插入图片描述

然后把q的每一列当成(x,y)取出来,下图所示,一共有8个(x,y),所有的q向量都进行这样子的计算,计算完成之后,我们就说q叠加上了旋转位置编码。

在这里插入图片描述

然后又转换回来,这个q叠加上了旋转位置编码

在这里插入图片描述

4、我简单提供一个证明,证明在向量在旋转位置编码之后,词汇距离越近,内积就越大,假设两个token的q向量都一样。

假设两个token的初始表示为相同的向量:𝑣=[1,0,1,0]

旋转矩阵为:
在这里插入图片描述
下面我们来套用上面说到的公式计算:

当这个向量位置为 1

在这里插入图片描述

当这个向量位置为 3

在这里插入图片描述

在这里插入图片描述

5、最后代码实现,在这里我也是拿某些大佬的,我在这里写了很多print形状,从观察矩阵形状变化去理解比较好

我这里提一下,就是你会发现代码其实有点难以看懂,这是因为涉及到批次计算,多头,导致矩阵代码中做了很多的矩阵变换,但是本质的流程还是我上面所说的,只是在实现过程中,考虑到优化导致的代码难以按照我上面所述的流程看懂,但是本质和上面一样。
import torch
import torch.nn as nn
import torch.nn.functional as F
import math# %%def sinusoidal_position_embedding(batch_size, nums_head, max_len, output_dim, device):# batch_size = 8# nums_head = 12# max_len = 10# output_dim = 32position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(-1)ids = torch.arange(0, output_dim // 2, dtype=torch.float)  # 即公式里的i, i的范围是 [0,d/2]theta = torch.pow(10000, -2 * ids / output_dim)print(position) # [[0.],[1.],[2.],[3.],[4.],[5.],[6.],[7.],[8.],[9.]]print(output_dim) # 32print(theta) # tensor([1.0000e+00, 5.6234e-01, 3.1623e-01, 1.7783e-01, 1.0000e-01, 5.6234e-02,# 3.1623e-02, 1.7783e-02, 1.0000e-02, 5.6234e-03, 3.1623e-03, 1.7783e-03,# 1.0000e-03, 5.6234e-04, 3.1623e-04, 1.7783e-04])print(theta.size()) # torch.Size([16])print(position.size()) # torch.Size([10, 1])embeddings = position * theta  # 即公式里的:pos / (10000^(2i/d))print(embeddings.size()) # torch.Size([10, 16])# (max_len, output_dim//2, 2)embeddings = torch.stack([torch.sin(embeddings), torch.cos(embeddings)], dim=-1)# For example:# torch.sin(embeddings) = tensor([[ 0.0000,  0.8415,  0.9093,  0.1411, -0.7568, -0.9589]])# torch.cos(embeddings) = tensor([[ 1.0000,  0.5403, -0.4161, -0.9900, -0.6536,  0.2837]])# torch.stack = tensor([[[ 0.0000,  1.0000],#                        [ 0.8415,  0.5403],#                        [ 0.9093, -0.4161],#                        [ 0.1411, -0.9900],#                        [-0.7568, -0.6536],#                        [-0.9589,  0.2837]]])print(embeddings.size()) # torch.Size([10, 16, 2])embeddings = embeddings.repeat((batch_size, nums_head, *([1] * len(embeddings.shape))))  # 在bs维度重复,其他维度都是1不重复print(embeddings.size()) # torch.Size([8, 12, 10, 16, 2])# reshape后就是:偶数sin, 奇数cos了embeddings = torch.reshape(embeddings, (batch_size, nums_head, max_len, output_dim))print(embeddings.size()) # torch.Size([8, 12, 10, 32])embeddings = embeddings.to(device)return embeddings# %%def RoPE(q, k):# q,k: (bs, head, max_len, output_dim)batch_size = q.shape[0] # batch_size = 8nums_head = q.shape[1] # nums_head = 12max_len = q.shape[2] # max_len = 10output_dim = q.shape[3] # output_dim = 32pos_emb = sinusoidal_position_embedding(batch_size, nums_head, max_len, output_dim, q.device)print(pos_emb.size()) # torch.Size([8, 12, 10, 32])# 看rope公式可知,相邻cos,sin之间是相同的,所以复制一遍。如(1,2,3)变成(1,1,2,2,3,3)cos_pos = pos_emb[...,  1::2].repeat_interleave(2, dim=-1)  # 将奇数列信息抽取出来也就是cos 拿出来并复制sin_pos = pos_emb[..., ::2].repeat_interleave(2, dim=-1)  # 将偶数列信息抽取出来也就是sin 拿出来并复制print(cos_pos.size()) # torch.Size([8, 12, 10, 32])print(sin_pos.size()) # torch.Size([8, 12, 10, 32])q2 = torch.stack([-q[..., 1::2], q[..., ::2]], dim=-1)print(q2.size()) # torch.Size([8, 12, 10, 16, 2])q2 = q2.reshape(q.shape)  # reshape后就是正负交替了print(q2.size()) # torch.Size([8, 12, 10, 32])# 更新qw, *对应位置相乘q = q * cos_pos + q2 * sin_posprint(q.size()) # torch.Size([8, 12, 10, 32])k2 = torch.stack([-k[..., 1::2], k[..., ::2]], dim=-1)k2 = k2.reshape(k.shape)# 更新kw, *对应位置相乘k = k * cos_pos + k2 * sin_posreturn q, k# %%def attention(q, k, v, mask=None, dropout=None, use_RoPE=True):# q.shape: (bs, head, seq_len, dk)# k.shape: (bs, head, seq_len, dk)# v.shape: (bs, head, seq_len, dk)if use_RoPE:q, k = RoPE(q, k)d_k = k.size()[-1]att_logits = torch.matmul(q, k.transpose(-2, -1))  # (bs, head, seq_len, seq_len)att_logits /= math.sqrt(d_k)if mask is not None:att_logits = att_logits.masked_fill(mask == 0, -1e9)  # mask掉为0的部分,设为无穷大att_scores = F.softmax(att_logits, dim=-1)  # (bs, head, seq_len, seq_len)if dropout is not None:att_scores = dropout(att_scores)# (bs, head, seq_len, seq_len) * (bs, head, seq_len, dk) = (bs, head, seq_len, dk)return torch.matmul(att_scores, v), att_scoresif __name__ == '__main__':# (bs, head, seq_len, dk)q = torch.randn((8, 12, 10, 32))k = torch.randn((8, 12, 10, 32))v = torch.randn((8, 12, 10, 32))res, att_scores = attention(q, k, v, mask=None, dropout=None, use_RoPE=True)# (bs, head, seq_len, dk),  (bs, head, seq_len, seq_len)print(res.shape, att_scores.shape)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/878753.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenFeign请求拦截器,注入配置属性类(@ConfigurationProperties),添加配置文件(yml)中的token到请求头

一、需求 OpenFeign请求拦截器,注入配置属性类(ConfigurationProperties),添加配置文件(yml)中的token到请求头 在使用Spring Boot结合OpenFeign进行微服务间调用时,需要在发起HTTP请求时添加一…

MLLM(二)| 阿里开源视频理解大模型:Qwen2-VL

2024年8月29日,阿里发布了 Qwen2-VL!Qwen2-VL 是基于 Qwen2 的最新视觉语言大模型。与 Qwen-VL 相比,Qwen2-VL 具有以下能力: SoTA对各种分辨率和比例的图像的理解:Qwen2-VL在视觉理解基准上达到了最先进的性能&#…

Apache Guacamole 安装及配置VNC远程桌面控制

文章目录 官网简介支持多种协议无插件浏览器访问配置和管理应用场景 Podman 部署 Apache Guacamole拉取 docker 镜像docker-compose.yml部署 PostgreSQL生成 initdb.sql 脚本部署 guacamole Guacamole 基本用法配置 VNC 连接 Mac 电脑开启自带的 VNC 服务 官网 https://guacam…

Gmtracker安装中存在的问题

Gmtracker安装中存在的问题 GMtracker安装问题该如何解决? 使用用服务器,在云服务器中使用conda环境 python 3.6的版本环境. pip install -r requirements.txt 在网上查找资料:opencv安装失败卡在这里是因为没有使用高版本的python环境 切换…

pdf在线转换成word免费版,一键免费转换

在日常的学习和办公中,PDF文件和Word文档是我们离不开的两种最常见的文件,而PDF与Word文档之间的转换成为了我们日常工作中不可或缺的一部分。无论是为了编辑、修改还是共享文件,掌握多种PDF转Word的方法都显得尤为重要。很多小伙伴关心能不能…

SpringSecurity Oauth2 - 密码模式完成身份认证获取令牌 [自定义UserDetailsService]

文章目录 1. 授权服务器2. 授权类型1. Password (密码模式)2. Refresh Token(刷新令牌)3. Client Credentials(客户端凭证模式) 3. AuthorizationServerConfigurerAdapter4. 自定义 TokenStore 管理令牌1. TokenStore 的作用2. Cu…

springweb获取请求数据、spring中拦截器

SpringWeb获取请求数据 springWeb支持多种类型的请求参数进行封装 1、使用HttpServletRequest对象接收 PostMapping(path "/login")//post请求//spring自动注入public String login(HttpServletRequest request){ System.out.println(request.getParameter("…

J.U.C Review - CopyOnWrite容器

文章目录 什么是CopyOnWrite容器CopyOnWriteArrayList优点缺点源码示例 仿写:CopyOnWriteMap的实现注意事项 什么是CopyOnWrite容器 CopyOnWrite容器是一种实现了写时复制(Copy-On-Write,COW)机制的并发容器。在并发场景中&#…

半导体产业核心环节有哪些?2024年中国半导体产业研究报告大揭秘!

半导体指常温下导电性能介于导体与绝缘体之间的材料。半导体应用在集成电路、消费电子、通信系统、光伏发电、照明应用、大功率电源转换等领域。半导体产业经济则是指以半导体产品为核心的经济活动,包括芯片设计、制造、封装测试及应用等。它是全球经济的支柱&#…

【mysql】mysql修改sql_mode之后无法启动

现象:修改后mysql无法启动,不报错 原因:MySQL在8以后sql_mode已经取消了NO_AUTO_CREATE_USER这个关键字。去掉这个关键字后,启动就可以了 修改前: sql_modeSTRICT_TRANS_TABLES,NO_ZERO_IN_DATE,NO_ZERO_DATE,ERROR…

在线演示文稿应用PPTist本地化部署并实现无公网IP远程编辑PPT

文章目录 前言1. 本地安装PPTist2. PPTist 使用介绍3. 安装Cpolar内网穿透4. 配置公网地址5. 配置固定公网地址 前言 本文主要介绍如何在Windows系统环境本地部署开源在线演示文稿应用PPTist,并结合cpolar内网穿透工具实现随时随地远程访问与使用该项目。 PPTist …

C#编程语言及.NET 平台快速入门指南

Office Word 不显示 Citavi 插件,如何修复?_citavi安装后word无加载项-CSDN博客 https://blog.csdn.net/Viviane_2022/article/details/128946061?spm1001.2100.3001.7377&utm_mediumdistribute.pc_feed_blog_category.none-task-blog-classify_ta…

CSS选择器:一文带你区分CSS中的伪类和伪元素!

一、伪类选择器 1、什么是伪类选择器 伪类选择器,顾名思义,是一种特殊的选择器,它用来选择DOM元素在特定状态下的样式。这些特定状态并不是由文档结构决定的,而是由用户行为(如点击、悬停)或元素的状态&a…

Java SpringBoot构建传统文化网,三步实现信息展示,传承文化精髓

✍✍计算机毕业编程指导师** ⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流! ⚡⚡ Java…

大道至简,大厂官网基本都走简洁化设计路线。

「大道至简」是一种设计理念,强调设计应该追求简洁、直观、易用,而不是过多的修饰和繁琐的细节。 对于大厂的官网来说,简洁化设计路线的选择可能有以下几个原因: 1. 更好的用户体验: 简洁的设计可以让用户更容易地理…

NTFS硬盘支持工具Paragon NTFS for Mac 15.4.44 中文破解版

Paragon NTFS for Mac 15.4.44 中文破解版是一个底层的文件系统驱动程序,专门开发用来弥合Windows和Mac OS X之间的不兼容性,通过在Mac OS X系统下提供对任何版本的NTFS文件系统完全的读写访问服务来弥合这种不兼容性。为您轻松解决Mac不能识别Windows NTFS文件难题…

【深度学习】线性回归的从零开始实现与简洁实现

前言 我原本后面打算用李沐老师那本《动手学深度学习》继续“抄书”,他们团队也免费提供了电子版(https://zh-v2.d2l.ai/d2l-zh-pytorch.pdf)。但书里涉及到代码,一方面展示起来不太方便,另一方面我自己也有很多地方看不太懂。 这让我开始思…

Pepper佩盼尔wordpress模板

Pepper佩盼尔WordPress模板是一款专为追求简洁、现代和专业外观的网站设计者和开发者打造的高品质主题。它以简站为主题,强调“让建网站更简单”的理念,旨在为用户提供一个易于使用、功能丰富的平台来构建他们的在线业务或个人网站。 模板特点包括&…

手机玩黑神话悟空二周目 GameViewer远程助你手机畅玩黑神话悟空 解锁全成就全收集

用手机摸鱼完成黑神话悟空二周目全收集、成就全解锁,实现随时随地玩黑神话悟空,你可以用网易GameViewer远程。 这款远程控制软件专为游戏玩家打造,不管你是上班族,还是学生党,都可以用它在手机、平板上玩黑神话悟空&am…

谈一谈JVM的GC(垃圾回收)

JVM(Java Virtual Machine)的GC(Garbage Collection,垃圾回收)是Java语言的一个重要特性,它负责自动管理内存,释放那些不再被使用的对象所占用的内存空间。以下是对JVM GC的详细介绍&#xff1a…