数据结构:树形结构(树、堆)详解
- 一、树
- (一)树的性质
- (二)树的种类
- 二叉树
- 多叉树
- 满N叉树
- 完全N叉树
- (三)二叉树的实现
- 1、二叉树结构定义
- 2、二叉树功能实现
- (1)前序、中序、后序、层序遍历
- (2)二叉树结点个数
- (3) ⼆叉树叶⼦结点个数
- (4) 二叉树第k层结点个数
- (5)二叉树的深度/高度
- (6)⼆叉树查找值为x的结点
- (7)二叉树销毁
- (8)判断二叉树是否为完全二叉树
- 二、堆
- (一)堆的实现
- 1、堆的结构定义
- 2、堆的初始化
- 3、向上调整操作
- 4、向下调整操作
- 5、入堆操作
- 6、堆的扩容
- 7、出堆操作
- 8、堆的销毁
- 9、堆的判空、查看堆顶元素
- (二)哈夫曼编码实现
- 结束语
一、树
树的物理结构和逻辑结构上都是树形结构
(一)树的性质
• ⼦树是不相交的
• 除了根结点外,每个结点有且仅有⼀个⽗结点
• ⼀棵N个结点的树有N-1条边
(二)树的种类
树按照根节点的分支来分,可以分为二叉树和多叉树。
二叉树
二叉树(Binary Tree)
定义:每个节点最多有两个子节点的树结构。可以是空树,或者由一个根节点和左、右子树组成。
多叉树
多叉树(Multiway Tree)
定义:每个节点可以有多个子节点的树结构,节点子节点的数量没有限制。
树按照结点的特性来观察,又可以有满N叉树和完全N叉树
满N叉树
满N叉树是一种深度为K的二叉树,其中每一层的节点数都达到了该层能有的最大节点数。
完全N叉树
除了最后一层外,每一层都被完全填满,并且最后一层所有节点都尽量靠左排列。
(三)二叉树的实现
1、二叉树结构定义
用 typedef 可以使得后面的使用范围更广
typedef int BTDataType;
typedef struct BinaryTreeNode
{BTDataType data;struct BinaryTreeNode* left;struct BinaryTreeNode* right;
}BTNode;
2、二叉树功能实现
(1)前序、中序、后序、层序遍历
下面的层序遍历方式采用的是一层一层
的处理方式
void PreOrder(BTNode* root) {if (root == NULL) return;printf("%d ", root->data);PreOrder(root->left);PreOrder(root->right);return;
}void InOrder(BTNode* root) {if (root == NULL) return;InOrder(root->left);printf("%d ", root->data);InOrder(root->right);return;
}void PostOrder(BTNode* root) {if (root == NULL) return;PostOrder(root->left);PostOrder(root->right);printf("%d ", root->data);return;
}void LevelOrder(BTNode* root) {queue<BTNode*> q;q.push(root);while (!q.empty()) {int num = q.size();for (int i = 0; i < num; i++) {BTNode* temp = q.front();if(temp->left) q.push(temp->left);if(temp->right) q.push(temp->right);printf("%d ", temp->data);q.pop();}printf("\n");}return;
}
(2)二叉树结点个数
两种方法都可以实现求结点个数,但是第二种需要另外创建变量接收返回值
,因此第一种方式比较好
//方法一
int BinaryTreeSize(BTNode* root) {if (root == NULL) return 0;return 1 + BinaryTreeSize(root->left) +BinaryTreeSize(root->right);
}//方法二
void BinaryTreeSize(BTNode* root, int* psize) {if (root == NULL) return;if (root->left) {(*psize)++;BinaryTreeSize(root->left, psize);}if (root->right) {(*psize)++;BinaryTreeSize(root->right, psize);}return;
}
(3) ⼆叉树叶⼦结点个数
只需要统计叶子结点即可,和求普通结点个数相似
int BinaryTreeLeafSize(BTNode* root) {if (root == NULL) return 0;if (root->left == NULL && root->right == NULL) return 1;return BinaryTreeLeafSize(root->left) + BinaryTreeLeafSize(root->right);
}
(4) 二叉树第k层结点个数
需要加一个二叉树层数的变量
int BinaryTreeLevelKSize(BTNode* root, int k) {if (root == NULL) return 0;if (k == 1) return 1;return BinaryTreeLevelKSize(root->left, k - 1) + BinaryTreeLevelKSize(root->right, k - 1);
}
(5)二叉树的深度/高度
int BinaryTreeDepth(BTNode* root) {if (root == NULL) return 0;int a = BinaryTreeDepth(root->left);int b = BinaryTreeDepth(root->right);return (a > b ? a : b) + 1;
}
(6)⼆叉树查找值为x的结点
如果没有找到,不要忘记返回空
BTNode* BinaryTreeFind(BTNode* root, BTDataType x) {if (root == NULL) return NULL;if (root->data == x) return root;BTNode* left = BinaryTreeFind(root->left, x);if (left) return left;BTNode* right = BinaryTreeFind(root->right, x);if (right) return right;return NULL;
}
(7)二叉树销毁
采用二级指针的方式传入,可以避免函数处理后在进行置空处理
。
void BinaryTreeDestory(BTNode** root) {if (*root == NULL) return;BinaryTreeDestory(&((*root)->left));BinaryTreeDestory(&((*root)->right));free(*root);*root = NULL;return;
}
(8)判断二叉树是否为完全二叉树
这段代码是老夫目前想了许久,觉得很有不错的代码,先不考虑它的实现复杂度以及简洁程度,它实现的功能不错,可以将二叉树包括空结点放在队列之中
,自己觉得很好,哈哈,也许你没看到这句,那我就放心了。
bool BinaryTreeComplete(BTNode* root) {queue<BTNode*> q;BinaryTreePushQueue(root, q);while (!q.empty()) {if (q.front() != NULL) q.pop();else break;}while (!q.empty()) {if (q.front() == NULL) q.pop();else return false;}return true;
}void BinaryTreePushQueue(BTNode* root, queue<BTNode*>& q) {vector<vector<BTNode*>> v;BinaryNodePushVector(root, v, 0);for (int i = 0; i < v.size(); i++) {for (auto x : v[i]) {q.push(x);}}return;
}void BinaryNodePushVector(BTNode* root, vector<vector<BTNode*>>& v, int k) {if (v.size() == k) v.push_back(vector<BTNode*>());if (root == NULL) {v[k].push_back(NULL); //如果不处理空结点,取消这步即可return;}v[k].push_back(root);BinaryNodePushVector(root->left, v, k + 1);BinaryNodePushVector(root->right, v, k + 1);return;
}
二、堆
堆的物理结构是一段连续空间,但是逻辑机构是树形结构
(一)堆的实现
1、堆的结构定义
下面通过宏函数来实现交换,可以使得交换简便,或者用指针也行。
typedef int HeapDataType;typedef struct Heap {HeapDataType* __data;HeapDataType* data;int count;int capacity;
}Heap;
#define SWAP(a ,b){\HeapDataType c = (a);\(a) = (b);\(b) = (c);\
}
2、堆的初始化
用偏移量的方式,节约了内存。
从数组下标为1开始分配结点,使得后面求父节点,左右孩子运算和逻辑更简单
void HeapInit(Heap* pHeap) {assert(pHeap);pHeap->__data = (HeapDataType*)malloc(sizeof(HeapDataType));pHeap->data = pHeap->__data - 1;pHeap->capacity = 1;pHeap->count = 0;return;
}
3、向上调整操作
可以使用递归或者是循环来实现向上调整
void Heap_UP_Update(Heap* pHeap, int i) {assert(pHeap);while (FATHER(i) >= 1 && pHeap->data[FATHER(i)] > pHeap->data[i]) {SWAP(pHeap->data[FATHER(i)], pHeap->data[i]);i = FATHER(i);}return;
}void DG_Heap_UP_Update(Heap* pHeap, int i) {assert(pHeap);if (FATHER(i) < 1) return;if (pHeap->data[FATHER(i)] > pHeap->data[i]) {SWAP(pHeap->data[FATHER(i)], pHeap->data[i]);i = FATHER(i);DG_Heap_UP_Update(pHeap, i);}return;
}
4、向下调整操作
void Heap_DOWN_Update(Heap* pHeap, int i) {assert(pHeap);int size = pHeap->count - 1;while (LEFT(i) <= size) {int l = LEFT(i), r = RIGHT(i), ind = i;if (pHeap->data[ind] > pHeap->data[l]) ind = l;if (r <= size && pHeap->data[ind] > pHeap->data[r]) ind = r;if (ind == i) break;SWAP(pHeap->data[i], pHeap->data[ind]);i = ind;}return;
}
5、入堆操作
void HeapPush(Heap* pHeap, HeapDataType x) {assert(pHeap);HeapCheckCapacity(pHeap);pHeap->data[pHeap->count + 1] = x;DG_Heap_UP_Update(pHeap, pHeap->count + 1);pHeap->count += 1;return;
}
6、堆的扩容
void HeapCheckCapacity(Heap* pHeap) {assert(pHeap);if (pHeap->capacity == pHeap->count) {HeapDataType* temp = (HeapDataType*)realloc(pHeap->__data, 2 * pHeap->capacity * sizeof(HeapDataType));if (!temp) {perror("Heap Realloc Fail!");exit(1);}pHeap->__data = temp;pHeap->capacity *= 2;}return;
}
7、出堆操作
void HeapPop(Heap* pHeap) {assert(pHeap);assert(!HeapEmpty(pHeap));pHeap->data[1] = pHeap->data[pHeap->count];Heap_DOWN_Update(pHeap, 1);pHeap->count -= 1;return;
}
8、堆的销毁
void HeapDestroy(Heap* pHeap) {assert(pHeap);free(pHeap->__data);pHeap->data = NULL;pHeap->__data = NULL;pHeap->capacity = 0;pHeap->count = 0;return;
}
9、堆的判空、查看堆顶元素
int HeapEmpty(Heap* pHeap) {assert(pHeap);return pHeap->count == 0;
}HeapDataType HeapTop(Heap* pHeap) {assert(!HeapEmpty(pHeap));return pHeap->data[1];
}
(二)哈夫曼编码实现
#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<stdlib.h>
#include<time.h>
#include<string.h>
#include<algorithm>
#include<unordered_map>
#include<vector>
using namespace std;#define FATHER(i) ((i) / 2)
#define LEFT(i) ((i) * 2)
#define RIGHT(i) ((i) * 2 + 1)typedef struct Node {char* c;int freq;struct Node* lchild, * rchild;
}Node;template<typename T>
void Swap(T& a, T& b) {T c = a;a = b;b = c;return;
}//void swap(Node* a, Node* b) {
// Node* c = a;
// a = b;
// b = c;
// return;
//}Node* getNewNode(int freq,const char* c) {Node* p = (Node*)malloc(sizeof(Node));p->freq = freq;p->c = _strdup(c);p->lchild = p->rchild = NULL;return p;
}void clear(Node* root) {if (root == NULL) return;clear(root->lchild);clear(root->rchild);free(root);return;
}typedef struct heap {Node** data, **__data;int size, count;
}heap;heap* initHeap(int n) {heap* p = (heap*)malloc(sizeof(heap));p->__data = (Node**)malloc(sizeof(Node*) * n);p->data = p->__data - 1;p->size = n;p->count = 0;return p;
}int empty(heap* h) {return h->count == 0;
}int full(heap* h) {return h->count == h->size;
}Node* top(heap* h) {if (empty(h)) return NULL;return h->data[1];
}//void up_update(Node** data, int i) {
// while (FATHER(i) >= 1) {
// int ind = i;
// if (data[i]->freq < data[FATHER(i)]->freq) {
// swap(data[i], data[FATHER(i)]);
// }
// if (ind == i) break;
// i = FATHER(i);
// }
// return;
//}void up_update(Node** data, int i) {while (i > 1 && data[i]->freq < data[FATHER(i)]->freq) {Swap(data[i], data[FATHER(i)]);i = FATHER(i);}return;
}void down_update(Node** data, int i, int n) {while (LEFT(i) <= n) {int ind = i, l = LEFT(i), r = RIGHT(i);if (data[i]->freq > data[l]->freq) ind = l;if (RIGHT(i) <= n && data[r]->freq < data[ind]->freq) ind = r;if (ind == i) break;Swap(data[ind], data[i]);i = ind;}return;
}void push(heap* h, Node* node) {if (full(h)) return;h->count += 1;h->data[h->count] = node;up_update(h->data, h->count);return;
}void pop(heap* h) {if (empty(h)) return;h->data[1] = h->data[h->count];h->count -= 1;down_update(h->data, 1, h->count);return;
}void clearHeap(heap* h) {if (h == NULL) return;free(h->__data);free(h);return;
}Node* build_huffman_tree(Node** nodeArr, int n) {heap* h = initHeap(n);for (int i = 0; i < n; i++) {push(h, nodeArr[i]);}Node* node1, * node2;int freq;for (int i = 1; i < n; i++) {node1 = top(h);pop(h);node2 = top(h);pop(h);freq = node1->freq + node2->freq;Node* node3 = getNewNode(freq, "0");node3->lchild = node1;node3->rchild = node2;push(h, node3);}return h->data[1];
}void output(Node* root) {if (root == NULL) return;output(root->lchild);//if (root->lchild == NULL && root->rchild == NULL) printf("%s : %d\n", root->c, root->freq);output(root->rchild);return;
}char charArr[100];
unordered_map<char*, char*> h;void extract_huffman_code(Node* root, int i) {charArr[i] = 0;if (root->lchild == NULL && root->rchild == NULL) {h[root->c] = _strdup(charArr);return;}charArr[i - 1] = '0';extract_huffman_code(root->lchild, i + 1);charArr[i - 1] = '1';extract_huffman_code(root->rchild, i + 1);return;
}int main() {
#define MAX_CHAR 26//1.首先用一个数组读取相关字符串及其频率Node** charArr = (Node**)malloc(sizeof(Node*)*MAX_CHAR);char arr[10];int freq;for (int i = 0; i < MAX_CHAR;i++) {scanf("%s%d", arr, &freq); charArr[i] = getNewNode(freq, arr);}//2.建立哈夫曼树Node* root = build_huffman_tree(charArr, MAX_CHAR);//3.提取哈夫曼编码进入unordered_mapextract_huffman_code(root, 1);//4.将unordered_map转换成vector排序,可以按照字典序输出编码vector<pair<char*, char*>> v(h.begin(), h.end());sort(v.begin(), v.end(), [&](const pair<char*, char*>& a, const pair<char*, char*>& b) {return strcmp(a.first, b.first) < 0;});for (auto& x : v) {printf("%s : %s\n", x.first, x.second);}return 0;
}
结束语
关注博主的专栏,博主会分享更多的数据结构知识!
🐾博主的数据结构专栏