【2025校招】4399 NLP算法工程师笔试题

目录

  • 1. 第一题
  • 2. 第二题
  • 3. 第三题

⏰ 时间:2024/08/19
🔄 输入输出:ACM格式
⏳ 时长:2h

本试卷分为单选,自我评价题,编程题

单选和自我评价这里不再介绍,4399的编程题一如既往地抽象,明明是NLP岗位的笔试题,却考了OpenCV相关的知识。btw,跟网友讨论了下,4399似乎不同时间节点的笔试题是一样的???

1. 第一题

第一题是LC原题:441. 排列硬币,题目和题解请前往LC查看。

2. 第二题

题目描述

请使用OpenCV库编写程序,实现在视频文件中实时追踪一个人手持手机绿幕的四个顶点的坐标。

要求

  1. 使用颜色分割技术检测绿幕区域。(8分)
  2. 使用适当的方法(如轮廓检测)找到绿幕的四个顶点。(10分)
  3. 在视频帧中标记出这四个顶点。(8分)

手机绿幕指:手机屏幕显示全绿色图片,用于后期处理替换为其他界面,绿色范围:lower_green = np.array([35, 100, 100])upper_green = np.array([85, 255, 255])

测试用例

输入:green_screen_track.mp4

输出:带顶点标记的视频序列帧图片


题解

import cv2
import numpy as nplower_green = np.array([35, 100, 100])
upper_green = np.array([85, 255, 255])def get_largest_contour(contours):""" 获取最大轮廓 """max_contour = max(contours, key=cv2.contourArea)return max_contourdef get_four_vertices(contour):""" 近似轮廓为四边形 """epsilon = 0.02 * cv2.arcLength(contour, True)approx = cv2.approxPolyDP(contour, epsilon, True)if len(approx) == 4:return approx.reshape(4, 2)else:return Nonedef main(video_path):cap = cv2.VideoCapture(video_path)while cap.isOpened():ret, frame = cap.read()if not ret:breakhsv_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)mask = cv2.inRange(hsv_frame, lower_green, upper_green)contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)if contours:largest_contour = get_largest_contour(contours)vertices = get_four_vertices(largest_contour)if vertices is not None:for (x, y) in vertices:cv2.circle(frame, (x, y), 5, (0, 0, 255), -1)cv2.polylines(frame, [vertices], isClosed=True, color=(0, 255, 0), thickness=2)cv2.imshow('Green Screen Tracking', frame)if cv2.waitKey(1) & 0xFF == ord('q'):breakcap.release()cv2.destroyAllWindows()if __name__ == "__main__":video_path = 'green_screen_track.mp4'main(video_path)

3. 第三题

You can use Chinese to answer the questions.

Problem Description

You need to use the Swin Transformer model to train a binary classifier to identify whether an image contains a green screen. Green screens are commonly used in video production and photography for background replacement in post-production. Your task is to write a program that uses the Swin Transformer model to train and evaluate the performance of this classifier.

Input Data

  1. Training Dataset: A set of images, including images with and without green screens.
  2. Labels: Labels for each image, where 0 indicates no green screen and 1 indicates the presence of a green screen.

Output Requirements

  1. Trained Model: Train a binary classifier using the Swin Transformer model.
  2. Model Evaluation: Evaluate the model’s accuracy, precision, recall, and F1-score on a validation or test set.

Programming Requirements

  1. Data Preprocessing: Including image loading, normalization, and label processing.
  2. Model Definition: Using the Swin Transformer model.
  3. Training Process: Including loss function, optimizer, and training loop.
  4. Evaluation Process: Evaluate the model’s performance on the validation or test set.
  5. Results Presentation: Output evaluation metrics and visualize some prediction results.

Here is a sample code framework to help you get started:

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms, datasets
from swin_transformer_pytorch import SwinTransformer
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from PIL import Image# Dataset class definition
class GreenScreenDataset(Dataset):def __init__(self, image_paths, labels, transform=None):self.image_paths = image_pathsself.labels = labelsself.transform = transformdef __len__(self):return len(self.image_paths)def __getitem__(self, idx):image = Image.open(self.image_paths[idx]).convert('RGB')label = self.labels[idx]if self.transform:image = self.transform(image)return image, label# Data preprocessing, please define transform
# TODO# Load datasets
train_dataset = GreenScreenDataset(train_image_paths, train_labels, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)val_dataset = GreenScreenDataset(val_image_paths, val_labels, transform=transform)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)# Define the SwinTransformer model
# TODO# Loss function and optimizer
criterion = nn.CrossEntropyLoss()
# TODO# Training process
def train(model, train_loader, criterion, optimizer, num_epochs=10):model.train()for epoch in range(num_epochs):running_loss = 0.0for images, labels in train_loader:# TODO: forward pass, compute loss, backpropagation, optimizer steprunning_loss += loss.item()print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {running_loss/len(train_loader):.4f}')# Evaluation process
def evaluate(model, val_loader):model.eval()all_preds = []all_labels = []with torch.no_grad():for images, labels in val_loader:outputs = model(images)_, preds = torch.max(outputs, 1)all_preds.extend(preds.cpu().numpy())all_labels.extend(labels.cpu().numpy())accuracy = accuracy_score(all_labels, all_preds)# TODO: Calculate precision, recall, and F1-scoreprint(f'Accuracy: {accuracy:.4f}, Precision: {precision:.4f}, Recall: {recall:.4f}, F1-score: {f1:.4f}')# Train the model
train(model, train_loader, criterion, optimizer, num_epochs=10)# Evaluate the model
evaluate(model, val_loader)

题解

该问题要求训练一个基于Swin Transformer模型的二分类器,用以识别图像中是否包含绿幕。解决方案涉及数据预处理、模型设计、训练和评估等多个环节。

首先,在数据预处理阶段,图像需要被调整大小并进行归一化,以满足Swin Transformer的输入需求。此外,数据集中的标签是二值化的,分别代表有无绿幕(0表示无绿幕,1表示有绿幕),确保数据集类能够准确处理这些标签是至关重要的。在模型设计上,使用了预训练的Swin Transformer模型,并针对二分类任务进行了微调。输出层被替换为一个具有两个节点的全连接层,分别对应两个类别。通过这种方式,模型能够有效地适应二分类任务。训练过程采用了标准的训练循环,设置了损失函数和优化器,并使用学习率调度器动态调整学习率。此外,为了防止过拟合,模型在训练过程中还应用了正则化技术,如dropout。在模型评估阶段,除了准确率,还使用了精确率、召回率和F1分数等指标,以全面评估模型在二分类任务中的表现。同时,为了更直观地展示模型效果,选择了一些样本图像进行可视化,显示它们的预测结果与实际标签的对比。

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from swin_transformer_pytorch import SwinTransformer
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np# 数据集类定义
class GreenScreenDataset(Dataset):def __init__(self, image_paths, labels, transform=None):self.image_paths = image_pathsself.labels = labelsself.transform = transformdef __len__(self):return len(self.image_paths)def __getitem__(self, idx):image = Image.open(self.image_paths[idx]).convert('RGB')label = self.labels[idx]if self.transform:image = self.transform(image)return image, torch.tensor(label, dtype=torch.long)# 数据预处理
transform = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])train_dataset = GreenScreenDataset(train_image_paths, train_labels, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)val_dataset = GreenScreenDataset(val_image_paths, val_labels, transform=transform)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)model = SwinTransformer(hidden_dim=96,layers=(2, 2, 6, 2),num_heads=(3, 6, 12, 24),num_classes=2,window_size=7,input_resolution=224
)
model = model.to(torch.device('cuda' if torch.cuda.is_available() else 'cpu'))criterion = nn.CrossEntropyLoss()
optimizer = optim.AdamW(model.parameters(), lr=1e-4, weight_decay=0.01)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)# 训练
def train(model, train_loader, criterion, optimizer, scheduler, num_epochs=10):model.train()for epoch in range(num_epochs):running_loss = 0.0for images, labels in train_loader:images, labels = images.to(device), labels.to(device)optimizer.zero_grad()outputs = model(images)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()scheduler.step()print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {running_loss/len(train_loader):.4f}')# 模型评估
def evaluate(model, val_loader):model.eval()all_preds = []all_labels = []with torch.no_grad():for images, labels in val_loader:images, labels = images.to(device), labels.to(device)outputs = model(images)_, preds = torch.max(outputs, 1)all_preds.extend(preds.cpu().numpy())all_labels.extend(labels.cpu().numpy())accuracy = accuracy_score(all_labels, all_preds)precision = precision_score(all_labels, all_preds)recall = recall_score(all_labels, all_preds)f1 = f1_score(all_labels, all_preds)print(f'Accuracy: {accuracy:.4f}, Precision: {precision:.4f}, Recall: {recall:.4f}, F1-score: {f1:.4f}')return all_preds, all_labels# 可视化
def visualize_predictions(val_loader, model):model.eval()images, labels = next(iter(val_loader))images, labels = images.to(device), labels.to(device)outputs = model(images)_, preds = torch.max(outputs, 1)images = images.cpu().numpy()preds = preds.cpu().numpy()labels = labels.cpu().numpy()# 可视化前6个样本plt.figure(figsize=(12, 8))for i in range(6):plt.subplot(2, 3, i + 1)image = np.transpose(images[i], (1, 2, 0))image = image * np.array([0.229, 0.224, 0.225]) + np.array([0.485, 0.456, 0.406])  # 反归一化image = np.clip(image, 0, 1)plt.imshow(image)plt.title(f'Pred: {preds[i]}, Actual: {labels[i]}')plt.axis('off')plt.show()device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train(model, train_loader, criterion, optimizer, scheduler, num_epochs=10)
all_preds, all_labels = evaluate(model, val_loader)
visualize_predictions(val_loader, model)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/878100.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

xss-labs通关攻略 11-15关

第十一关:less-11 步骤一:利用burp抓包 步骤二:添加referer:click me!" type"button" οnmοuseοver"alert(/xss/)进行放包 第十二关:less-12 步骤一:利用burp抓包 步骤二:修改User A…

【机器学习】独立成分分析的基本概念、应用领域、具体实例(含python代码)以及ICA和PCA的联系和区别

引言 独立成分分析(Independent Component Analysis,简称ICA)是一种统计方法,用于从多个观察到的混合信号中提取出原始的独立信号源 文章目录 引言一、独立成分分析1.1 定义1.2 独立成分分析的基本原理1.3 独立成分分析的步骤1.3.…

RACL: Adversarially Robust Neural Architectures

RACL: 对抗鲁棒网络架构 论文链接:https://arxiv.org/abs/2009.00902v2 Abstract 深度神经网络(DNN)容易受到对抗性攻击。现有的方法致力于开发各种鲁棒训练策略或正则化来更新神经网络的权值。但除了权重之外,网络中的整体结构和信息流是由网络架构明…

模块一(任务3):WDM系统原理解读

一、WDM的概念及波段划分 1、WDM系统概念 WDM系统就像高铁系统一样,这里可以将一根光纤看做是一个多车道的高速铁路。 把不同波长的光信号组合起来(也就是复用),进入到同一根光纤中进行传输,在接收端将组合波长的光信…

数据库mysql集群主从、高可用MGR、MHA技术详解

一、安装数据库mysql步骤 环境:红帽7.9系统 安装依赖 yum install cmake gcc-c openssl-devel ncurses-devel.x86_64 libtirpc-devel-1.3.3-8.el9_4.x86_64.rpm rpcgen.x86_64 -y 将下载的MySQL软件包解压并cd到mysql的目录下 [rootmysql-node10 ~]# tar zxf mysq…

数据结构(邓俊辉)学习笔记】优先级队列 08——左式堆:结构

文章目录 1. 第一印象2. 堆之合并3. 奇中求正4. NPL5. 左倾性6. 左展右敛 1. 第一印象 在学习过常规的完全二叉堆之后,我们再来学习优先级队列的另一变种,也就是左式堆。所谓的左式堆,也就是在拓扑形态上更加倾向于向左侧倾斜的一种堆&#…

洛谷刷题(4)

P1089 [NOIP2004 提高组] 津津的储蓄计划 题目描述 津津的零花钱一直都是自己管理。每个月的月初妈妈给津津 300 元钱,津津会预算这个月的花销,并且总能做到实际花销和预算的相同。 为了让津津学习如何储蓄,妈妈提出,津津可以随…

UE5打包iOS运行查看Crash日志

1、查看Crash 1、通过xCode打开设备 2、选择APP打开最近的日志 3、选择崩溃时间点对应的日志 4、选择对应的工程打开 5、就能看到对应的Crash日志 2、为了防止Crash写代码需要注意 1、UObject在Remov

Nextjs(App Router) 开发记录

最近业余在开发一款智能助理产品,记录开发过程中的一些问题以备忘,也是帮其他人防坑。 主要技术栈 本项目采用了前沿的技术栈来构建一个高性能且可维护的应用。选择了 Nx 作为构建管理和单一代码库解决方案,通过模块化和插件系统来扩展和优…

论文学习—Efficient Multi-label Classification with Many Labels

论文学习:Efficient Multi-label Classification with Many Labels 摘要2. 多标签分类相关工作2.1 Label Transformation1. **降维(Dimensionality Reduction)**2. **回归模型(Regression Model)**3. **逆变换&#xf…

【Python机器学习】NLP词中的数学——词袋

我们已经收集了一些词/词条,对这些词进行计数,并将它们归并成词干或者词元,接下来就可以做更多的事情。分析词对一些简单的任务有用,例如得到词用法的一些统计信息,或者进行关键词检索。但如果我们想知道哪些词对于某篇…

利用深度学习技术来实现街景图像的语义分割(街景图像语义分割)

本项目致力于利用深度学习技术来实现街景图像的语义分割。通过精确地识别和分类图像中的每个像素,该技术能够自动划分出街道、人行道、车辆、行人等各种不同的物体类别。这在智能交通系统、自动驾驶、城市规划等领域有着广泛的应用前景。 技术实现 深度学习模型&am…

zsh: command not found: brew(M系列芯片)

利用官网的命令安装完brew /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"查看版本,提示找不到命令 % brew -v zsh: command not found: brew解决方法,在终端中执行以下命令&#xff0c…

git仓库删除某个历史提交

目录 问题情况1情况2 问题 如果我们在开发过程中,存在一些验证性的提交或者失误性的提交,那么这些提交我们不想要了,怎么办? 情况1 如果是想要删除某个commitid之后的所有提交 那么git reset 可以满足你 git reset --hard 你要…

Keilv5 逻辑分析仪的使用

声明:基于视频【事件驱动型编程和 QP/C 框架】所做的笔记 Keilv5逻辑分析仪是Keil MDK集成开发环境(IDE)中的一个工具,用于帮助开发人员进行嵌入式系统的调试和分析。 它的作用主要有: 监测信号:Keilv5逻…

QGIS制图流程

在之前我们推送了QGIS的软件安装、插件安装、数据导入等基础操作,今天我们介绍一下QGIS的制图功能。QGIS的制图与ArcGIS Pro存在一定的区别,但是思路上相似。我们教程内容主要是参考QGIS官方文档: https://docs.qgis.org/3.34/en/docs/user_…

大数据技术之 Flume概述、安装(1)

目录 Flume 概述 Flume 定义 为什么选用 Flume Flume 基础架构 Agent Source Sink Channel Event Flume 安装 Flume 安装部署 安装地址 安装部署 Flume 概述 Flume 定义 Flume 是 Cloudera 提供的一个高可用的、高可靠的、分布式的海量日志采集、聚合和传输的系统。Flume…

Webbench1.5安装使用Ubuntu

1、安装依赖包 sudo apt-get update sudo apt-get install libtirpc-dev2、安装Webbench1.5 参考https://github.com/baiguo/webbench-1.5 # 可能需要root权限,我是切换到root用户才安装成功 wget http://home.tiscali.cz/~cz210552/distfiles/webbench-1.5.tar.…

安卓系统 XBL阶段详解

在安卓系统的启动流程中,XBL(eXtensible Boot Loader 或 Secondary Bootloader)是一个关键阶段,特别是在使用QualComm(高通)等SOC(System on Chip)的设备上。以下是对XBL阶段的详细解…

怎么把两个pdf合并成一个pdf?学会这7招,1分钟轻松搞定!

新手小白如何将pdf合并成一个文件?pdf是目前较为主流的一种传输格式,内容包含了丰富的多媒体数据,包括文本、图像、表格等多种元素,很多企业和教育工作者都喜欢使用pdf格式。 pdf文件体积较小,兼容性高,平时…