基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(一)---UnrealCV获取深度+分割图像

前言

  • 本系列教程旨在使用UE5配置一个具备激光雷达+深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2UE5仿真的通讯,达到小车自主导航的目的。
  • 本教程使用的环境:
    • ubuntu 22.04 ros2 humble
    • windows11 UE5.4.3
    • python8
  • 本系列教程将涉及以下内容:
    • UE仿真环境和简易小车的搭建
    • UE仿真雷达数据和RGBD深度相机数据的获取
    • 使用ROS2和UE5进行通讯
    • 使用ROS2导航Nav2及其相关模块对小车进行自主通讯
    • UE5部分C++编写和ROS2C++代码编写
    • 部分插件使用python进行编写
  • UE5系列教程:UE5-C++入门教程(一):使用代码创建一个指定目标的移动小球-CSDN博客
  • 本教程默认有ROS2导航及其gazebo仿真相关方面基础,Nav2相关的学习教程可以参考本人的其他博客Nav2代价地图实现和原理–Nav2源码解读之CostMap2D(上)-CSDN博客

UE介绍

请添加图片描述

  • UE5(Unreal Engine5)是由Epic Games开发的一款功能强大、跨平台的最新版的游戏开发引擎,以其高质量的实时渲染效果、多编程语言支持、丰富的市场资源和活跃的社区而闻名,广泛应用于游戏、影视、建筑等多个领域,不断推动着数字内容产业的发展。

  • 更多相关内容可以移步自我的教程UE5-C++入门教程(一):使用代码创建一个指定目标的移动小球-CSDN博客


UnrealCV插件

  • UnrealCV是一个开源项目,旨在将Unreal Engine(UE)与计算机视觉(CV)领域结合起来。它允许开发者利用UE的高质量渲染能力来生成用于机器学习和计算机视觉研究的数据集和场景。UnrealCV提供了一个Python接口,允许用户通过Python脚本控制UE引擎,从而实现自动化场景渲染、数据采集和交互。请添加图片描述

  • 更多内容->UnrealCV官网

安装
  • 这里来介绍以下如何为UE5配置UnrealCV插件插件

  • 首先我们先登录UnrealCV的github仓库,由于官方提供的二进制release目前只支持到UE4.16版本,所以这里我们选择源码安装请添加图片描述

  • 注意选择5.2分支,目前UnrealCV已经支持到UE5.4版本请添加图片描述

  • git clone后我们会得到一个unrealcv的文件夹,文件夹内容大致如下请添加图片描述

  • 找到你的项目文件夹(该文件夹下有一个以.uproject结尾的项目文件),创建一个名为Plugins的文件夹请添加图片描述

  • 把上述你下载的unrealcv文件夹整个移动到Plugins文件交下,然后重新打开这个项目,项目会弹出UnrealCV插件是否进行编译的提示,选择是,然后就会进行编译请添加图片描述

  • 安装好后,在UE5界面左上角的编辑,在下拉菜单找到插件,搜索UnrealCV请添加图片描述

  • 返回UE主界面,找到绿色箭头开始运行此关卡(请务必记得这一步!!!)请添加图片描述

  • 在左下方的控制台输入vget /unrealcv/status确认插件配置情况请添加图片描述

  • 在左侧输出日志得到如下输出则表示插件配置成功请添加图片描述

报错指南
  • 控制台输入vget /unrealcv/statusUE直接闪退请添加图片描述

  • 检查是否进行绿色箭头开始运行此关卡此步骤(八成问题)

  • 检查UE下载是否完全,检查UE版本是否为5.4.3,检查unrealcv下载的分支是否为5.2


使用python对Unreal客户端与服务器进行连接通讯

  • UnrealCV 实现了在游戏和计算机视觉算法之间的进程间通信 (IPC)。这种通信可以用下图来总结。由UE创建的游戏将通过加载UnrealCV服务器作为其模块来扩展。当游戏启动时,UnrealCV将启动一个TCP 服务器并等待命令。任何程序都可以使用UnrealCV客户端代码发送纯文本 UnrealCV 命令来控制场景或检索信息。请添加图片描述

  • 下面我们来简单的写一段代码进行通讯测试,默认的UnrealCV服务器运行在本地的9000端口,我们通过简单的配置完成下述代码

from unrealcv import Client  
client = Client(('localhost', 9000))  # 连接到 UnrealCV 服务器  
if client.connect():  print('UnrealCV connected successfully')  
else:  print('UnrealCV is not connected')  exit()  response = client.request('vget /unrealcv/status')  
print(response)  
# 断开连接  
client.disconnect()
  • 上述运行结果将会输出和我们在UE控制台同样的内容输出,即视为通讯连接成功,此过程中确保UE允许了UnrealCV插件且UE处于运行此关卡中请添加图片描述

使用UnrealCV进深度和分割图像的获取

  • 这里我们介绍UnrealCV的一些基础用法,首先我们使用UE简单在摄像机视角前搭建一些简单物体请添加图片描述

  • 为相机添加初始位置,这里我们假定设置相机的位置为0,0,0(运行此关卡默认的摄像头视角就是0,0,0),注意这里必须设置,否则后面拍摄的深度和分割图像可能无法正确拍摄。

camera_settings = {  'location': {'x': 0, 'y': 0, 'z': 0},  # 相机位置  'rotation': {'pitch': 0, 'yaw': 0, 'roll': 0}  # 相机旋转  
}  
# 使用 vset 命令设置相机的位置  
client.request('vset /camera/0/location {x} {y} {z}'.format(**camera_settings['location']))  # 使用 vset 命令设置相机的旋转  
client.request('vset /camera/0/rotation {pitch} {yaw} {roll}'.format(**camera_settings['rotation']))
  • 然后我们在上述连接的基础上添加如下代码,下述的代码将保存
    • lit:摄像机原始图像
    • object_mask:物体分割图像
    • depth:深度图像(注意这里深度图像保存为npy格式)
client.request('vget /camera/0/lit C:/Users/lzh/Desktop/UE5_ROS2_project/camera/lit.png')  
client.request('vget /camera/0/object_mask C:/Users/lzh/Desktop/UE5_ROS2_project/camera/object_mask.png')  
client.request('vget /camera/0/depth C:/Users/lzh/Desktop/UE5_ROS2_project/camera/depth.npy')
  • 我们简单对图像进行展示,便得到以下图像请添加图片描述
# 加载图像  
lit_img = plt.imread(r'C:/Users/lzh/Desktop/UE5_ROS2_project/camera/lit.png')  
object_mask_img = plt.imread(r'C:/Users/lzh/Desktop/UE5_ROS2_project/camera/object_mask.png')  
depth_img = np.load(r'C:\Users\lzh\Desktop\UE5_ROS2_project\camera\depth.npy')  # 创建图形和子图  
fig, axes = plt.subplots(1, 3, figsize=(15, 5))  # 显示 lit 图像  
axes[0].imshow(lit_img)  
axes[0].set_title('Lit Image')  
axes[0].axis('off')  # 显示 object_mask 图像  
axes[1].imshow(object_mask_img, cmap='gray')  
axes[1].set_title('Object Mask')  
axes[1].axis('off')  # 显示 depth 图像  
axes[2].imshow(depth_img, cmap='gray', vmin=0, vmax=1300)  
axes[2].set_title('Depth Image')  
axes[2].axis('off')  # 显示图形  
plt.tight_layout()  
plt.show()

实时进行图像读取与显示

  • 上面我们进行了单张文件的保存,下面我们来介绍如何进行实时读取,这里我们介绍核心函数,通过下述三个函数,我们就能实时返回读取到的图像数据,为此我们需要进行解码
data=client.request('vget /camera/0/lit png')
data=client.request('vget /camera/0/object_mask png')
data=client.request('vget /camera/0/depth npy')
  • 对于普通图像和分割图像,我们只需要
lit_img = cv2.imdecode(np.frombuffer(self.data, np.uint8), cv2.IMREAD_COLOR)
object_mask_img = cv2.imdecode(np.frombuffer(self.data, np.uint8), cv2.IMREAD_COLOR)
  • 对于深度图像,如果我们希望使用opencv-python进行展示,我们需要进行转换
import io
def read_npy(self,res):  return np.load(io.BytesIO(res))
depth_img = self.read_npy(self.data)  
gray_depth = cv2.convertScaleAbs(depth_img, alpha=(255.0 / 1300.0))  
# 使用cv2.applyColorMap将灰度图转换为伪彩色图  
colored_depth = cv2.applyColorMap(gray_depth, cv2.COLORMAP_JET)  
  • 通过上述核心代码,我们只需要简单写一个循环,进行展示即可
  • 在不额外添加移动物体以及移动摄像机的前提下,我们移动观测者小球,便能得到以下实时画面
    在这里插入图片描述
    在这里插入图片描述

封装

  • 为了后续教程我们方便使用,我们封装以下整个流程
from unrealcv import Client  
import cv2  # OpenCV  
import numpy as np  
import io  
import time  
class UE5CameraCenter:  def __init__(self):  self._client = Client(('localhost', 9000))  self._connection_check()  self._camera_init()  self._lit_image=LitImage()  self._object_mask=ObjectMaskImage()  self._depth_mask=DepthImage()  def __del__(self):  self._client.disconnect()  def _connection_check(self):  '''检查是否连接'''  if self._client.connect():  print('UnrealCV connected successfully')  else:  print('UnrealCV is not connected')  exit()  def set_camera_pose(self,x,y,z,pitch,yaw,roll):  '''设置摄像头位置'''  camera_settings = {  'location': {'x': x, 'y': y, 'z': z},  # 相机位置  'rotation': {'pitch': pitch, 'yaw': yaw, 'roll': roll}  # 相机旋转  }  # 设置相机的位置  self._client.request('vset /camera/0/location {x} {y} {z}'.format(**camera_settings['location']))  # 设置相机的旋转  self._client.request('vset /camera/0/rotation {pitch} {yaw} {roll}'.format(**camera_settings['rotation']))  def _camera_init(self):  '''摄像头初始化'''  self.set_camera_pose(0,0,0,0,0,0)  def get_camera_data(self, camera_type):  valid_types = {'lit', 'object_mask', 'depth'}  # 检查 camera_type 是否在有效类型中  if camera_type not in valid_types:  raise ValueError(f"Invalid camera type. Expected one of {valid_types}, but got '{camera_type}'.")  # 根据camera_type获取相应的数据  if camera_type == 'lit':  return self._lit_image.get_image(self._client)  elif camera_type == 'object_mask':  return self._object_mask.get_image(self._client)  elif camera_type == 'depth':  return self._depth_mask.get_image(self._client)  def test(self):  while True :  self._lit_image.get_image(self._client)  self._object_mask.get_image(self._client)  self._depth_mask.get_image(self._client)  self._lit_image.display()  self._object_mask.display()  self._depth_mask.display()  class Image:  def __init__(self):  self.data_np = None  def get_image(self,client):  pass  def display(self):  pass  class LitImage(Image):  def __init__(self):  self.data_np = None  def get_image(self,client):  data = client.request('vget /camera/0/lit png')  self.data_np=cv2.imdecode(np.frombuffer(data, np.uint8), cv2.IMREAD_COLOR)  def display(self):  cv2.imshow("lit_img", self.data_np)  key = cv2.waitKey(1)  
class ObjectMaskImage(Image):  def __init__(self):  self.data_np = None  def get_image(self,client):  data=client.request('vget /camera/0/object_mask png')  self.data_np=cv2.imdecode(np.frombuffer(data, np.uint8), cv2.IMREAD_COLOR)  def display(self):  cv2.imshow("object_mask_data", self.data_np)  key = cv2.waitKey(1)  
class DepthImage(Image):  def __init__(self):  self.data_np = None  def get_image(self,client):  data=client.request('vget /camera/0/depth npy')  self.data_np = self.read_npy(data)  def display(self):  gray_depth = cv2.convertScaleAbs(self.data_np, alpha=(255.0 / 1300.0))  # 使用cv2.applyColorMap将灰度图转换为伪彩色图  colored_depth = cv2.applyColorMap(gray_depth, cv2.COLORMAP_JET)  cv2.imshow("depth_img", colored_depth)  def read_npy(self,res):  return np.load(io.BytesIO(res))  def main():  ue5_cam_center=UE5CameraCenter()  ue5_cam_center.test()  
if __name__ =='__main__':  main()
  • 并预留三个接口
    • 设置摄像机位置def set_camera_pose(self,x,y,z,pitch,yaw,roll):
    • 获取摄像机图像def get_camera_data(self, camera_type):
    • 测试(显示摄像机画面)def test(self):

UnrealCV指令大全

通用命令
  • vget /unrealcv/status:获取 UnrealCV 插件的状态。
  • vget /unrealcv/help:列出所有可用的命令及其帮助信息。
  • vget /unrealcv/version:获取 UnrealCV 的版本信息。
  • vget /scene/name:获取当前场景的名称。
  • vget /level/name:获取当前级别的名称。
对象命令
  • vget /objects:获取场景中所有对象的名称。
  • vset /objects/spawn_cube:在场景中生成一个用于调试的立方体。
  • vget /object/[str]/location:获取指定对象的坐标位置。
  • vset /object/[str]/location [float] [float] [float]:设置指定对象的坐标位置。
  • vget /object/[str]/rotation:获取指定对象的旋转。
  • vset /object/[str]/rotation [float] [float] [float]:设置指定对象的旋转。
  • vset /object/[str]/color [uint] [uint] [uint]:设置指定对象的颜色。
  • vset /object/[str]/destroy:销毁指定对象。
相机命令
  • vget /cameras:列出场景中所有传感器(相机)。
  • vset /camera/[uint]/location [float] [float] [float]:设置指定相机的位置。
  • vset /camera/[uint]/rotation [float] [float] [float]:设置指定相机的旋转。
  • vget /camera/[uint]/lit [str]:从指定相机获取光照图像。
  • vget /camera/[uint]/depth [str]:从指定相机获取深度图像。
  • vget /camera/[uint]/normal [str]:从指定相机获取表面法线图像。
  • vget /camera/[uint]/object_mask [str]:从指定相机获取对象掩码图像。
  • vset /camera/[uint]/fov [float]:设置指定相机的视场角。
视图模式命令
  • vset /viewmode [str]:设置视图模式,如 lit(光照)、normal(法线)、depth(深度)、object_mask(对象掩码)等。
  • vget /viewmode:获取当前的视图模式。
其他命令
  • vrun [str]:运行 Unreal 引擎内置的命令。
  • vexec [str]:运行 Unreal 引擎蓝图函数。
  • vbp [str]:运行 Unreal 引擎蓝图函数。

小结

  • 本节介绍了如何使用UnrealCV插件在UE中获取原始,深度,分割图像,并实时进行读取
  • 下一节我们将进行跨平台实现图像数据的传输
  • 感谢大家对本教程的支持,如有错误,欢迎指出~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/877621.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

二叉树中的奇偶树问题

目录 一题目: 二思路汇总: 1.二叉树层序遍历: 1.1题目介绍: 1.2 解答代码(c版): 1.3 解答代码(c版): 1.4 小结一下: 2.奇偶树分析&#xf…

推荐一个开源的kafka可视化客户端GUI工具(Kafka King)

大佬的博客地址: https://blog.ysboke.cn/posts/tools/kafka-king Github地址: https://github.com/Bronya0/Kafka-King Kafka-King功能清单 查看集群节点列表(完成)支持PLAINTEXT、SASL PLAINTEXT用户名密码认证(完…

Python 如何创建和解析 XML 文件

XML(可扩展标记语言)是一种广泛使用的标记语言,主要用于存储和传输数据。它具有结构化、层次化的特点,常被用作数据交换格式。Python 提供了多种工具和库来处理 XML 文件,包括创建、解析和操作 XML 文档。 一、XML 简…

qt-13 进度条(模态和非模态)

进度条-模态和非模态 progressdlg.hprogressdlg.cppmain.cpp运行图模态非模态 progressdlg.h #ifndef PROGRESSDLG_H #define PROGRESSDLG_H#include <QDialog> #include <QLabel> #include <QLineEdit> #include <QProgressBar> #include <QCombo…

人物形象设计:塑造独特角色的指南

引言 人物形象设计是一种创意过程&#xff0c;它利用强大的设计工具&#xff0c;通过视觉和叙述元素塑造角色的外在特征和内在性格。这种设计不仅赋予角色以生命&#xff0c;还帮助观众或读者在心理层面上与角色建立联系。人物形象设计的重要性在于它能够增强故事的吸引力和说…

p8 Run的流程和Docker原理

docker run的运行原理图 docker是怎么工作的&#xff1f; docker是一个cs的一个结构的系统docker的守护进程运行在宿主机上面通过socket进行访问 其实就是看下面的这个图&#xff0c;通过客户端的命令来操作docker的守护进程然后启动一些容器&#xff0c;默认容器是不启动的 …

网络基础概念【网络】

文章目录 网络协议协议分层 OSI七层模型TCP/IP五层&#xff08;或四层&#xff09;模型同局域网的两台主机通信数据包封装和解包分用&#xff08;数据段&#xff0c;数据报&#xff0c;数据帧&#xff09;网络中的地址管理 网络协议 协议分层 网络协议栈设计成层状结构&#…

【学习笔记】Day 20

一、进度概述 1、机器学习常识12-18&#xff0c;以及相关代码复现 二、详情 12、SVM&#xff08;support vector machines&#xff0c;支持向量机&#xff09; 实际上&#xff0c;支持向量机是一种二分类模型&#xff0c;它将实例的特征向量映射为空间中的一些点&#xff0c;…

如何将CSDN文章导出为pdf文件

第一步&#xff1a; 打开想要导出的页面&#xff0c;空白处点击鼠标右键⇒点击“检查”或“check”&#xff0c;或直接在页面按F12键。 第二步&#xff1a; 复制以下代码粘贴到控制台&#xff0c;并按回车。 若提示让输入“允许粘贴”或“allow pasting”&#xff0c;按提示…

百度地图路书实现历史轨迹回放、轨迹回放进度、聚合点、自定义弹框和实时监控视频、多路视频轮巡播放

前言 分享一个刚做完项目集成技术&#xff0c;一个车辆行驶轨迹监控、行车视频监控、对特种车辆安全监管平台&#xff0c;今年政府单位有很多监管平台项目&#xff0c;例如&#xff1a;渣土车监控、租出车监管、危害气体运输车监管等平台&#xff0c;这些平台都有车辆行驶轨迹…

Linux基础知识学习(五)

1. 用户组管理 每个用户都有一个用户组&#xff0c;系统可以对一个用户组中的所有用户进行集中管理&#xff08;开发、测试、运维、root&#xff09;。不同Linux 系统对用户组的规定有所不同&#xff0c;如Linux下的用户属于与它同名的用户组&#xff0c;这个用户组在创建用户…

QT聊天室基于Tcp

server.cpp #include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget),server(new QTcpServer(this)) // 给服务器指针对象实例化空间{ui->setupUi(this); }Widget::~Widget() {delete ui; }…

音频采集spring_ws_webrtc (html采集麦克风转gb711并发送广播播放)完整案例

下载地址&#xff1a;http://www.gxcode.top/code 项目说明 springbootwebscoektwebrtc 项目通过前端webrtc采集麦克风声音&#xff0c;通过websocket发送后台&#xff0c;然后处理成g711-alaw字节数据发生给广播UDP并播放。 后台处理项目使用线程池(5个线程)接受webrtc数据并…

mac如何恢复被同名替换掉的文件夹 mac文件被替换如何恢复

Mac系统一直以高性能遥遥领先其他的Windows系统&#xff0c;因此&#xff0c;Mac虽然价格远远高出其他的笔记本电脑&#xff0c;但是还是受到了一众用户的青睐。使用mac时&#xff0c;我们也经常会将一个文件命名为已经有了相同文件的文件名&#xff0c;且保存到同一个目标地址…

MATLAB-PSO-BiTCN-BiLSTM-Attention多变量分类

一、数据集 数据特征&#xff1a;12个多分类&#xff1a;4分类 ​ 二、PSO-BiTCN-BiLSTM-Attention网络 PSO-BiTCN-BiLSTM-Attention 网络是一种结合了多种深度学习技术和优化算法的复杂模型&#xff0c;用于处理时序数据任务&#xff0c;如时间序列预测、分类或其他相关问题…

【Linux】——进程概念(万字解读)

一 冯诺依曼体系结构 在此之前&#xff0c;我们先要理解我们计算机的冯诺依曼体系结构&#xff0c;因为是进程的基础 我们所有的操作其实都是基于这样一个模型&#xff0c;比如你在qq上&#xff0c;和别人发送消息&#xff0c;这个消息肯定是先通过输入设备进行输入&#xf…

一个注解轻松搞定审计日志服务!

【审计日志】&#xff0c;简单的说就是系统需要记录谁&#xff0c;在什么时间&#xff0c;对什么数据&#xff0c;做了什么样的更改&#xff01;任何一个 IT 系统&#xff0c;如果要过审&#xff0c;这项任务基本上也是必审项&#xff01; 实现【审计日志】这个需求&#xff0…

整体思想以及取模

前言&#xff1a;一开始由于失误&#xff0c;误以为分数相加取模不能&#xff0c;但是其实是可以取模的 这个题目如果按照一般方法&#xff0c;到达每个节点再进行概率统计&#xff0c;但是不知道为什么只过了百分之十五的测试集 题目地址 附上没过关的代码 #include<bits…

联想闪电鲨移动硬盘文件没删除却消失了怎么办

在日常的数据存储与管理中&#xff0c;移动硬盘作为便携且容量可观的存储设备&#xff0c;深受用户青睐。然而&#xff0c;当您发现联想闪电鲨移动硬盘中的文件突然消失&#xff0c;而您确信并未进行删除操作时&#xff0c;这无疑会令人感到困惑与焦虑。本文旨在为您揭开这一谜…

vue-element-admin——<keep-alive>不符合预期缓存的原因

vue-element-admin——<keep-alive>不符合预期缓存的原因 本文章&#xff0c;以现在中后台开发用的非常多的开源项目vue-element-admin为案例。首先&#xff0c;列出官方文档与缓存<keep-alive>相关的链接&#xff08;请认真阅读&#xff0c;出现缓存<keep-ali…