基于YOLO的植物病害识别系统:从训练到部署全攻略

基于深度学习的植物叶片病害识别系统(UI界面+YOLOv8/v7/v6/v5代码+训练数据集)

1. 引言

在农业生产中,植物叶片病害是影响作物产量和质量的主要因素之一。传统的病害检测方法依赖于人工识别,效率低且易受主观因素影响。随着深度学习技术的发展,基于计算机视觉的植物叶片病害自动识别系统得到了广泛关注和应用。本教程旨在通过构建一个基于YOLO模型的植物叶片病害识别系统,帮助读者掌握相关技术,实现从数据准备、模型训练到部署的全过程。

2. 项目准备

必备环境与工具
  • Python:项目开发的主要编程语言
  • Anaconda:Python数据科学平台,便于环境管理和包管理
  • YOLO (You Only Look Once):目标检测模型,选择v8/v7/v6/v5版本
  • OpenCV:计算机视觉库
  • Flask/Django:用于搭建UI界面的Web框架
安装与配置步骤
  1. 安装Python与Anaconda

    从Python官网下载安装Python:https://www.python.org/downloads/

    从Anaconda官网下载安装Anaconda:https://www.anaconda.com/products/distribution

  2. 配置YOLO环境

    安装YOLO依赖:

    pip install torch torchvision torchaudio
    pip install -U git+https://github.com/ultralytics/yolov5
    

3. 数据集准备

数据集简介

使用Kaggle上的植物叶片病害数据集,包含多种植物叶片的病害图像和标注。

数据集下载链接:https://www.kaggle.com/datasets

数据预处理
  1. 数据增强与标注

    使用LabelImg进行图像标注:https://github.com/tzutalin/labelImg

    安装LabelImg:

    pip install labelImg
    

    运行LabelImg进行图像标注:

    labelImg
    
  2. 数据集划分

    将数据集划分为训练集、验证集和测试集:

    import os
    import shutil
    import randomdef split_dataset(source_dir, train_dir, val_dir, test_dir, train_ratio=0.7, val_ratio=0.2):all_files = os.listdir(source_dir)random.shuffle(all_files)train_count = int(len(all_files) * train_ratio)val_count = int(len(all_files) * val_ratio)for i, file in enumerate(all_files):if i < train_count:shutil.move(os.path.join(source_dir, file), train_dir)elif i < train_count + val_count:shutil.move(os.path.join(source_dir, file), val_dir)else:shutil.move(os.path.join(source_dir, file), test_dir)split_dataset('data/source', 'data/train', 'data/val', 'data/test')
    

4. 模型训练

YOLO模型简介

YOLO (You Only Look Once) 是一种快速准确的目标检测模型。YOLOv8/v7/v6/v5 是不同版本的YOLO模型,性能和速度有所不同。

配置与训练
  1. 配置文件的修改

    修改YOLO配置文件:

    # example.yaml
    train: data/train
    val: data/val
    nc: 5  # number of classes
    names: ['class1', 'class2', 'class3', 'class4', 'class5']
    
  2. 超参数调整

    在配置文件中调整超参数,如batch size、learning rate等。

  3. 训练模型的步骤

    使用以下命令训练模型:

    python train.py --img 640 --batch 16 --epochs 50 --data example.yaml --cfg yolov5s.yaml --weights yolov5s.pt
    
训练过程中的常见问题与解决
  • 内存不足:减少batch size
  • 训练速度慢:使用GPU加速,确保CUDA正确安装

5. 模型评估与优化

模型评估指标
  • 准确率 (Accuracy)
  • 召回率 (Recall)
  • F1分数 (F1 Score)
from sklearn.metrics import accuracy_score, recall_score, f1_scorey_true = [...]  # true labels
y_pred = [...]  # predicted labelsaccuracy = accuracy_score(y_true, y_pred)
recall = recall_score(y_true, y_pred, average='macro')
f1 = f1_score(y_true, y_pred, average='macro')print(f"Accuracy: {accuracy}, Recall: {recall}, F1 Score: {f1}")
模型优化策略
  • 数据增强:使用更多的数据增强技术,如旋转、缩放、裁剪等
  • 超参数调优:通过网格搜索或贝叶斯优化找到最佳超参数
  • 使用迁移学习:使用预训练模型进行微调

6. 模型部署

Flask/Django搭建UI界面
  1. 项目结构介绍

    plant_disease_detection/
    ├── app.py
    ├── templates/
    │   ├── index.html
    │   └── result.html
    ├── static/
    │   └── styles.css
    └── models/└── yolov5s.pt
    
  2. 创建基础的网页模板

    • index.html

      <!DOCTYPE html>
      <html lang="en">
      <head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>Plant Disease Detection</title><link rel="stylesheet" href="{{ url_for('static', filename='styles.css') }}">
      </head>
      <body><h1>Plant Disease Detection</h1><form action="/predict" method="post" enctype="multipart/form-data"><input type="file" name="file"><button type="submit">Upload</button></form>
      </body>
      </html>
      
    • result.html

      <!DOCTYPE html>
      <html lang="en">
      <head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>Result</title><link rel="stylesheet" href="{{ url_for('static', filename='styles.css') }}">
      </head>
      <body><h1>Detection Result</h1><img src="{{ url_for('static', filename='uploads/' + filename) }}" alt="Uploaded Image"><p>{{ result }}</p>
      </body>
      </html>
      
后端集成
  1. 接口设计与实现

    • app.py
      from flask import Flask, request, render_template, url_for
      import os
      from werkzeug.utils import secure_filename
      import torch
      from PIL import Imageapp = Flask(__name__)
      app.config['UPLOAD_FOLDER'] = 'static/uploads/'model = torch.hub.load('ultralytics/yolov5', 'custom', path='models/yolov5s.pt')@app.route('/')
      def index():return render_template('index.html')@app.route('/predict', methods=['POST'])
      def predict():if 'file' not in request.files:return 'No file part'file = request.files['file']if file.filename == '':return 'No selected file'if file:filename = secure_filename(file.filename)filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)file.save(filepath)img = Image.open(filepath)results = model(img)results.save(save_dir=app.config['UPLOAD_FOLDER'])return render_template('result.html', filename=filename, result=results.pandas().xyxy[0].to_json(orient="records"))if __name__ == '__main__':app.run(debug=True)
      
部署模型到服务器
  1. 使用Gunicorn或其他部署工具

    pip install gunicorn
    gunicorn -w 4 app:app
    
  2. 部署到云服务器

    以AWS为例,创建EC2实例,配置安全组,上传项目文件,并使用Gunicorn运行应用。

7. 系统测试与演示

本地测试
  1. 测试用例设计

    设计多种病害图像测试系统的准确性。

  2. 测试结果分析

    记录测试结果,分析模型的准确性和误差。

在线演示
  1. 系统演示视频

    使用录屏软件录制系统的操作流程。

  2. 在线测试链接

    部署到云服务器后,提供在线测试链接供用户体验。

8. 总结与展望

项目总结
  1. 项目成果回顾

    本项目成功实现了基于YOLO的植物叶片病害识别系统,从数据准备、模型训练到部署的完整流程。

  2. 实践中的收获与心得

    通过本项目,读者能够掌握深度学习项目的完整开发流程,了解YOLO模型的应用和优化方法。

未来工作展望
  1. 系统优化方向

    进一步优化模型,提高检测准确性,减少误报和漏报。

  2. 更多应用场景探讨

    将该技术应用于更多的农作物病害检测,以及其他领域的目标检测任务。

9. 声明

声明:本文只是简单的项目思路,如有部署的想法,想要(UI界面+YOLOv8/v7/v6/v5代码+训练数据集+视频教学)的可以联系作者.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/877129.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

电脑桌面记事本便签哪个好,有哪些好用的桌面备忘记事工具推荐

在寻找高效办公的道路上&#xff0c;我们经常需要记住许多重要的事情&#xff0c;然而人的记忆力终究有限&#xff0c;这时候就需要依赖一些工具来帮助我们进行提醒。一款好的电脑桌面记事本便签、桌面日程安排软件就像是一位得力助手&#xff0c;它不仅能够帮助我们合理规划时…

项目经理的开源工具指南:优化您的选择过程

国内外主流的10款开源项目管理系统对比&#xff1a;PingCode、Worktile、禅道、Teambition、Gogs、码云 Gitee、Jira、Redmine、ProjectLibre、OpenProject。 在选择合适的开源项目管理系统时&#xff0c;很多团队面临诸多挑战&#xff1a;功能是否全面&#xff1f;易用性如何&…

Excel模拟计算演示-以矩阵乘计算密度为例

Excel模拟计算演示-以矩阵乘计算密度为例 1.参考链接2.CUDA_Occupancy_Calculator截图3.矩阵乘计算密度模拟计算的操作步骤及效果 安装好CUDA之后,/usr/local/cuda-12.1/tools/CUDA_Occupancy_Calculator.xls里会看到"TABLE(,B17)"这样的表达式,原来是模拟计算的结果…

3V升5V输出800mA可驱动10MA驱动蜂鸣片芯片AH6910

135-3806-7573今天&#xff0c;我们将深入解析一款名为AH6910的芯片&#xff0c;这款芯片以其独特的3V至5V宽电压输入范围、800mA的高输出电流能力&#xff0c;以及能够轻松驱动低至10mA需求的蜂鸣片&#xff0c;成为了众多电子项目中的优选元件。######一、AH6910芯片概述 AH…

RIP路由协议

RIP-路由信息协议V1/V2/NG NG版为ipv6专用 距离矢量型IGP路由协议&#xff0c;使用跳数作为度量&#xff0c;支持等开销负载均衡&#xff1b;基于UDP&#xff0c;520端工作&#xff0c;基于UDP V1和V2的区别&#xff1a; 1、v1为有类别协议--不支持VLSM/CIDR&#xff0c;即使使…

ic进阶|性能篇02:一文带你了解一种特殊的并行技术-展开!

本期文章让我们聊聊一种数字ic设计技术——展开&#xff0c;展开用于产生一个一次迭代就相当于原有结构的多次迭代的新电路结构。其相当于之前聊过的折叠技术的反向操作&#xff0c;折叠使用一个功能单元通过多次迭代来完成原有电路结构一次迭代的操作&#xff0c;相对于通过时…

中电金信:云原生时代IT基础设施管理利器——基础设施即代码(IaC)

在数字化转型、零售业务快速发展、信创建设驱动下&#xff0c;应用架构、技术架构、基础架构都已向云原生快速演进&#xff0c;银行业IT基础设施管理产生了非常大的变化&#xff0c;当前银行业&#xff0c;正在开展新一轮的核心应用系统重构、基础平台统一建设等重点任务&#…

Playwright 的使用

Playwright 的特点 支持当前所有主流浏览器&#xff0c;包括 Chrome 和 Edge &#xff08;基于 Chromiuns&#xff09;, Firefox , Safari 支持移动端页面测试&#xff0c;使用设备模拟技术&#xff0c;可以让我们在移动Web 浏览器中测试响应式的 Web 应用程序 支持所有浏览…

x264编解码库 -介绍和使用示例

目录 1&#xff1a;X264简单介绍 1.1&#xff1a;编译x264 1.2&#xff1a;x264简单介绍 1.3&#xff1a;x264的优势 1.4&#xff1a;x264与FFmpeg的关系 1.5&#xff1a;x264 编解码原理 1.6 进一步学习资源 2&#xff1a;demo效果 3&#xff1a;完整代码 4&#xff1a;附件…

6 网络

6 网络 1、概念2 IP地址3、套接字4、TCP协议4.1 TCP协议的基本特征4.2 建立连接4.4 终止连接4.5 编程模型 5、UDP协议5.1 UDP协议的基本特性5.2 常用函数5.3 UDP通信模型 6、域名解析 1、概念 计算机网络是实现资源共享和信息传递的计算机系统 ISO/OSI网络协议模型 TCP/IP协…

C语言进阶 10. 字符串

C语言进阶 10. 字符串 文章目录 C语言进阶 10. 字符串10.1. 字符串10.2. 字符串变量10.3. 字符串输入输出10.4. 字符串数组10.5. 单字符输入输出10.6. 字符串函数strlen()10.7. 字符串函数strc()10.8. 字符串函数strcpy()10.9. 字符串搜索函数10.10. PAT10-0. 说反话 (20)10-1.…

idea中导入外部依赖并打包到jar包中

前言&#xff1a; 很多时候在我们写项目对接三方的时候都需要导入三方jar包&#xff0c;而这时候我们用平常的pom里面写依赖发现导入不了&#xff08;直接把jar包放在本地导入的话打包的话也不会将该依赖打包进我们项目的jar包&#xff09;&#xff0c;我在网上找了几种方法 …

Linux网络-ss命令

作者介绍&#xff1a;简历上没有一个精通的运维工程师。希望大家多多关注我&#xff0c;我尽量把自己会的都分享给大家&#xff0c;下面的思维导图也是预计更新的内容和当前进度(不定时更新)。 Linux服务器作为一个常用的网络服务器&#xff0c;主要的作用就是向客户端提供网络…

【C++】C++11中R字符串的作用

在 C11 中添加了定义原始字符串的字面量 1.定义和基本使用 定义方式为&#xff1a; R"xxx(原始字符串)xxx"其中 () 两边的字符串可以省略&#xff0c;R只会处理括号中的字符串。 原始字面量 R 可以直接表示字符串的实际含义&#xff0c;而不需要额外对字符串做转义…

谷歌团队新技术Alchemist:使用扩散模型对材料属性进行参数控制

Alchemist是由谷歌团队和麻省理工学院联合研发的一项创新技术&#xff0c;它利用扩散模型对材料属性进行精细的参数控制。这项技术的核心在于能够对真实图像中的物体材料属性进行调整&#xff0c;包括粗糙度、金属感、反照率和透明度等。Alchemist的实现依赖于先进的文本到图像…

【时时三省】(C语言基础)循环语句while(2)

山不在高&#xff0c;有仙则名。水不在深&#xff0c;有龙则灵。 ——csdn时时三省 getchar和scanf的作用 示例: int main ( ) &#xff5b; char password[20] ( 0 ) ; printf ( "请输入密码&#xff1a;> " )&#xff1b; scanf ( " &#xff05;s…

Sping项目只能勾选17和21 (已解决) 导致的后续Invalid bound statement (not found):

问题发现 今天创建项目的时候发现 idea初始化spring的时候选择不了Java8 解决方案:替换URL为 https://start.aliyun.com/ 将IDEA页面创建Spring项目&#xff0c;其实是访问spring initializr去创建项目。故我们可以通过阿里云国服去间接创建Spring项目。 将https://start.spr…

使用 VMware vCenter Server(vSphere Client)迁移 ESXi 虚拟机

我需要将虚拟机 k8s-dev-node4从 ESXi 主机 192.168.1.161 迁移到 ESXi 主机 192.168.1.162 上&#xff0c;使用 VMware vCenter Server&#xff08;vSphere Client&#xff09;在浏览器上可视化操作&#xff0c;将这个需求变的非常简单。 1、选中需要迁移的虚拟机&#xff0c…

【AI落地应用实战】Amazon Bedrock +Amazon Step Functions实现链式提示(Prompt Chaining)

一、链式提示 Prompt Chaining架构 Prompt Chaining 是一种在生成式人工智能&#xff08;如大型语言模型&#xff09;中广泛使用的技术&#xff0c;它允许用户通过一系列精心设计的提示&#xff08;Prompts&#xff09;来引导模型生成更加精确、丰富且符合特定需求的内容。 P…

获取手机当前信号强度(dbm/asu值)解决 getGsmSignalStrength()总是返回99问题

能看到这篇文章说明网上哪些获取 &#xff08;dbm/asu值&#xff09;不适合你&#xff0c;不是他们的代码不正确&#xff0c;而是不符合你的情况 比如安卓6获取android手机信号强度 可以看这篇文章 https://blog.csdn.net/sinat_31057219/article/details/81134030 当然如果你…