1.简介
Linux内核PCIe软件框架如下图所示,按照PCIe的模式,可分为RC和EP软件框架。RC的软件框架分为五层,第一层为RC Controller Driver,和RC Controller硬件直接交互,不同的RC Controller,其驱动实现也不相同;第二层为Core层,该层将Controller进行了抽象,提供了统一的接口和数据结构,将所有的Controller管理起来,同时提供通用PCIe设备驱动注册和匹配接口,完成驱动和设备的绑定,管理所有PCIe设备;第三层为PCIe设备驱动层,包含了Storage、Ethernet、PCI桥等设备驱动;第四层为设备驱动层,根据设备类型,可分为字符设备驱动、网络设备驱动和块设备驱动。第五层为虚拟文件系统层,该层会在用户空间创建设备节点,提供了应用程序访问PCIe设备的路径。EP的软件框架分为六层,第一层为EP Controller Driver,和RC Controller Driver的功能相似;第二层为EP Controller Core层,该层向下将EP Controller进行了抽象,提供了统一的接口和数据结构,将所有的EP Controller管理起来;第三层为EP Function Core,该层统一管理EPF驱动和EPF设备,并提供两者相互匹配的方法;第四层为EP Configfs,在用户空间提供了配置和绑定EPF的接口,用户可以通过这些接口配置EPF,而无需修改驱动;第五层为EP Function Driver,和PCIe设备的具体功能相关;第六层为虚拟文件系统层,和RC的功能相同(EP也有设备驱动层,篇幅所限,图中未画出)。
2.RC软件框架
2.1.RC Controller Driver
RK3588 PCIe RC Controller Driver驱动定义如下所示。
MODULE_DEVICE_TABLE(of, rk_pcie_of_match);
static struct platform_driver rk_plat_pcie_driver = {.driver = {.name = "rk-pcie",.of_match_table = rk_pcie_of_match,.suppress_bind_attrs = true,.pm = &rockchip_dw_pcie_pm_ops,},.probe = rk_pcie_probe,
};module_platform_driver(rk_plat_pcie_driver);
2.2.Core
2.2.1.Host Bridge
RC Core层使用struct pci_host_bridge
数据结构描述Host Bridge。bus
描述Root bus,其他bus都在该数据结构的链表中。ops
和child_ops
描述Root bus和其他bus上的设备的配置空间访问方法。windows
链表保存bus-range和ranges的资源。dma_ranges
链表保存dma-ranges的资源。使用pci_alloc_host_bridge
和devm_pci_alloc_host_bridge
函数分配struct pci_host_bridge
数据结构,使用pci_free_host_bridge
释放struct pci_host_bridge
数据结构。pci_host_probe
枚举Host Bridge下面所有PCIe设备。
[include/linux/pci.h]
struct pci_host_bridge {struct device dev;struct pci_bus *bus; /* Root bus */struct pci_ops *ops; /* Low-level architecture-dependent routines */struct pci_ops *child_ops;void *sysdata;int busnr;struct list_head windows; /* resource_entry */struct list_head dma_ranges; /* dma ranges resource list */......
};
struct pci_host_bridge *pci_alloc_host_bridge(size_t priv);
struct pci_host_bridge *devm_pci_alloc_host_bridge(struct device *dev,size_t priv);
void pci_free_host_bridge(struct pci_host_bridge *bridge);
int pci_host_probe(struct pci_host_bridge *bridge);
struct pci_ops
描述访问PCIe设备配置空间的方法,需要RC Controller Driver实现。常用的是map_bus
、read
和write
,map_bus
用于映射访问配置空间的region,read
和write
用于读写配置空间。
[include/linux/pci.h]
struct pci_ops {int (*add_bus)(struct pci_bus *bus);void (*remove_bus)(struct pci_bus *bus);void __iomem *(*map_bus)(struct pci_bus *bus, unsigned int devfn, int where);int (*read)(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val);int (*write)(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val);
};
2.2.2.Bus
RC Core层使用struct pci_bus
数据结构描述PCIe bus。所有PCIe bus组成一个PCIe树型结构。parent
指向Parent buses,children
指向Child buses。devices
链表保存该bus上的所有设备。number
为该bus的总线编号,primary
表示上游总线编号,busn_res
保存桥下游总线编号范围,max_bus_speed
表示该bus支持的最大速度,cur_bus_speed
表示该bus当前的速度。pci_find_bus
根据PCIe域和总线编号查找struct pci_bus
,pci_add_new_bus
创建一个struct pci_bus
并添加到父总线上,注册Host Bridge时会自动创建bus0的数据结构,pci_bus_insert_busn_res
和pci_bus_update_busn_res_end
更新PCIe bus编号资源。
[include/linux/pci.h]
struct pci_bus {struct list_head node; /* Node in list of buses */struct pci_bus *parent; /* Parent bus this bridge is on */struct list_head children; /* List of child buses */struct list_head devices; /* List of devices on this bus */struct pci_dev *self; /* Bridge device as seen by parent */struct list_head slots; /* List of slots on this bus;protected by pci_slot_mutex */struct resource *resource[PCI_BRIDGE_RESOURCE_NUM];struct list_head resources; /* Address space routed to this bus */struct resource busn_res; /* Bus numbers routed to this bus */struct pci_ops *ops; /* Configuration access functions */struct msi_controller *msi; /* MSI controller */void *sysdata; /* Hook for sys-specific extension */struct proc_dir_entry *procdir; /* Directory entry in /proc/bus/pci */unsigned char number; /* Bus number */unsigned char primary; /* Number of primary bridge */unsigned char max_bus_speed; /* enum pci_bus_speed */unsigned char cur_bus_speed; /* enum pci_bus_speed */......
};struct pci_bus *pci_find_bus(int domain, int busnr);
struct pci_bus *pci_add_new_bus(struct pci_bus *parent,struct pci_dev *dev, int busnr);
void pci_remove_bus(struct pci_bus *bus);int pci_bus_insert_busn_res(struct pci_bus *b, int bus, int busmax);
int pci_bus_update_busn_res_end(struct pci_bus *b, int busmax);
2.2.3.Device
RC Core层使用struct pci_dev
数据结构描述PCIe Devices。devfn
表述device和function编号,vendor
、device
等保存PCIe设备配置空间头信息,driver
指向该设备使用的驱动。resource
保存设备的资源,如BAR、ROMs等。PCIe bus也是一个PCIe设备。pci_alloc_dev
分配struct pci_dev
数据结构,pci_dev_put
释放struct pci_dev
数据结构,pci_device_add
向总线上添加PCIe设备。pci_bus_add_devices
和pci_bus_add_device
匹配PCIe设备和PCIe驱动。
[include/linux/pci.h]
/* The pci_dev structure describes PCI devices */
struct pci_dev {struct list_head bus_list; /* Node in per-bus list */struct pci_bus *bus; /* Bus this device is on */struct pci_bus *subordinate; /* Bus this device bridges to */void *sysdata; /* Hook for sys-specific extension */struct proc_dir_entry *procent; /* Device entry in /proc/bus/pci */struct pci_slot *slot; /* Physical slot this device is in */unsigned int devfn; /* Encoded device & function index */unsigned short vendor;unsigned short device;unsigned short subsystem_vendor;unsigned short subsystem_device;unsigned int class; /* 3 bytes: (base,sub,prog-if) */......struct pci_driver *driver; /* Driver bound to this device */......int cfg_size; /* Size of config space *//** Instead of touching interrupt line and base address registers* directly, use the values stored here. They might be different!*/unsigned int irq;struct resource resource[DEVICE_COUNT_RESOURCE]; /* I/O and memory regions + expansion ROMs */bool match_driver; /* Skip attaching driver */......
};struct pci_dev *pci_alloc_dev(struct pci_bus *bus);
void pci_dev_put(struct pci_dev *dev);
void pci_device_add(struct pci_dev *dev, struct pci_bus *bus);
void pci_bus_add_device(struct pci_dev *dev);
void pci_bus_add_devices(const struct pci_bus *bus);
2.2.4.Driver
RC Core层使用struct pci_driver
数据结构描述PCIe设备驱动。PCIe设备和驱动匹配的信息保存到id_table
中。pci_register_driver
注册PCIe设备驱动,pci_unregister_driver
注销PCIe设备驱动。
[include/linux/pci.h]
struct pci_driver {struct list_head node;const char *name;/* Must be non-NULL for probe to be called */const struct pci_device_id *id_table;/* New device inserted */int (*probe)(struct pci_dev *dev, const struct pci_device_id *id);/* Device removed (NULL if not a hot-plug capable driver) */void (*remove)(struct pci_dev *dev);/* Device suspended */int (*suspend)(struct pci_dev *dev, pm_message_t state);/* Device woken up */int (*resume)(struct pci_dev *dev);void (*shutdown)(struct pci_dev *dev);/* On PF */int (*sriov_configure)(struct pci_dev *dev, int num_vfs);/* */const struct pci_error_handlers *err_handler;......
};
/* pci_register_driver() must be a macro so KBUILD_MODNAME can be expanded */
#define pci_register_driver(driver) \__pci_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)void pci_unregister_driver(struct pci_driver *dev);
pci_bus_type
用于匹配PCIe设备和驱动。
struct bus_type pci_bus_type = {.name = "pci",.match = pci_bus_match,.uevent = pci_uevent,.probe = pci_device_probe,.remove = pci_device_remove,.shutdown = pci_device_shutdown,.dev_groups = pci_dev_groups,.bus_groups = pci_bus_groups,.drv_groups = pci_drv_groups,.pm = PCI_PM_OPS_PTR,.num_vf = pci_bus_num_vf,.dma_configure = pci_dma_configure,
};
2.2.5.设备驱动
不同的PCIe设备,需要不同的PCIe设备驱动。下面列出PCIe桥和NVMe硬盘驱动。
2.2.5.1.桥驱动
如下所示,PCIe桥使用"pcieport"
驱动。
[drivers/pci/pcie/portdrv_pci.c]
static const struct pci_device_id port_pci_ids[] = {/* handle any PCI-Express port */{ PCI_DEVICE_CLASS(((PCI_CLASS_BRIDGE_PCI << 8) | 0x00), ~0) },/* subtractive decode PCI-to-PCI bridge, class type is 060401h */{ PCI_DEVICE_CLASS(((PCI_CLASS_BRIDGE_PCI << 8) | 0x01), ~0) },/* handle any Root Complex Event Collector */{ PCI_DEVICE_CLASS(((PCI_CLASS_SYSTEM_RCEC << 8) | 0x00), ~0) },{ },
};
static struct pci_driver pcie_portdriver = {.name = "pcieport",.id_table = &port_pci_ids[0],.probe = pcie_portdrv_probe,.remove = pcie_portdrv_remove,.shutdown = pcie_portdrv_remove,.err_handler = &pcie_portdrv_err_handler,.driver.pm = PCIE_PORTDRV_PM_OPS,
};
static int __init pcie_portdrv_init(void)
{if (pcie_ports_disabled)return -EACCES;pcie_init_services();dmi_check_system(pcie_portdrv_dmi_table);return pci_register_driver(&pcie_portdriver);
}
device_initcall(pcie_portdrv_init);
2.2.5.2.NVMe驱动
M.2 NVMe硬盘使用下面的驱动。
[drivers/nvme/host/pci.c]
static struct pci_driver nvme_driver = {.name = "nvme",.id_table = nvme_id_table,.probe = nvme_probe,.remove = nvme_remove,.shutdown = nvme_shutdown,
#ifdef CONFIG_PM_SLEEP.driver = {.pm = &nvme_dev_pm_ops,},
#endif.sriov_configure = pci_sriov_configure_simple,.err_handler = &nvme_err_handler,
};static int __init nvme_init(void)
{BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);return pci_register_driver(&nvme_driver);
}
module_init(nvme_init);
module_exit(nvme_exit);
3.EP软件框架
3.1.EP Controller Driver
RK3399 PCIe EP Controller Driverr驱动定义如下所示。
[drivers/pci/controller/pcie-rockchip-ep.c]
static const struct of_device_id rockchip_pcie_ep_of_match[] = {{ .compatible = "rockchip,rk3399-pcie-ep"},{},
};static struct platform_driver rockchip_pcie_ep_driver = {.driver = {.name = "rockchip-pcie-ep",.of_match_table = rockchip_pcie_ep_of_match,},.probe = rockchip_pcie_ep_probe,
};builtin_platform_driver(rockchip_pcie_ep_driver);
3.2.EP Controller Core
3.2.1.EPC Device
EP Controller Core层使用struct pci_epc
描述PCIe Endpoint Controller Device。EPC的所有的functions都挂到pci_epf
链表上,ops
指向了EPC提供的回调函数集合,用于设置EPC的配置空间、设置region、设置和发送中断等,windows
保存了EPC的Outbound的地址段,num_windows
表示Outbound的地址段的数量,max_functions
保存了functions的最大数量。使用pci_epc_create
和devm_pci_epc_create
函数创建struct pci_epc
,devm_pci_epc_destroy
和pci_epc_destroy
销毁struct pci_epc
。
[include/linux/pci-epc.h]
/* struct pci_epc - represents the PCI EPC device */
struct pci_epc {struct device dev;struct list_head pci_epf;const struct pci_epc_ops *ops;struct pci_epc_mem **windows;struct pci_epc_mem *mem;unsigned int num_windows;u8 max_functions;struct config_group *group;/* mutex to protect against concurrent access of EP controller */struct mutex lock;unsigned long function_num_map;struct atomic_notifier_head notifier;
};#define pci_epc_create(dev, ops) \__pci_epc_create((dev), (ops), THIS_MODULE)
#define devm_pci_epc_create(dev, ops) \__devm_pci_epc_create((dev), (ops), THIS_MODULE)
void devm_pci_epc_destroy(struct device *dev, struct pci_epc *epc);
void pci_epc_destroy(struct pci_epc *epc);
struct pci_epc_ops
如下图所示,这些回调函数很重要,EP Controller Driver必须实现。EPF驱动会调用这些函数配置EPC。
[include/linux/pci-epc.h]
struct pci_epc_ops {int (*write_header)(struct pci_epc *epc, u8 func_no,struct pci_epf_header *hdr);int (*set_bar)(struct pci_epc *epc, u8 func_no,struct pci_epf_bar *epf_bar);void (*clear_bar)(struct pci_epc *epc, u8 func_no,struct pci_epf_bar *epf_bar);int (*map_addr)(struct pci_epc *epc, u8 func_no,phys_addr_t addr, u64 pci_addr, size_t size);void (*unmap_addr)(struct pci_epc *epc, u8 func_no,phys_addr_t addr);int (*set_msi)(struct pci_epc *epc, u8 func_no, u8 interrupts);int (*get_msi)(struct pci_epc *epc, u8 func_no);int (*set_msix)(struct pci_epc *epc, u8 func_no, u16 interrupts,enum pci_barno, u32 offset);int (*get_msix)(struct pci_epc *epc, u8 func_no);int (*raise_irq)(struct pci_epc *epc, u8 func_no,enum pci_epc_irq_type type, u16 interrupt_num);int (*start)(struct pci_epc *epc);void (*stop)(struct pci_epc *epc);const struct pci_epc_features* (*get_features)(struct pci_epc *epc,u8 func_no);struct module *owner;
};
3.2.2.EPF绑定EPC
每个EP的Function都对应一个struct pci_epf
设备,即EPF设备,EPF设备和EPC通过pci_epc_add_epf
绑定,通过pci_epc_remove_epf
解除绑定。
[include/linux/pci-epc.h]
int pci_epc_add_epf(struct pci_epc *epc, struct pci_epf *epf);
void pci_epc_remove_epf(struct pci_epc *epc, struct pci_epf *epf);
3.2.3.EPC API
下面的接口是对struct pci_epc_ops
封装,供EPF驱动调用。
[include/linux/pci-epc.h]
int pci_epc_write_header(struct pci_epc *epc, u8 func_no,struct pci_epf_header *hdr);
int pci_epc_set_bar(struct pci_epc *epc, u8 func_no,struct pci_epf_bar *epf_bar);
void pci_epc_clear_bar(struct pci_epc *epc, u8 func_no,struct pci_epf_bar *epf_bar);
int pci_epc_map_addr(struct pci_epc *epc, u8 func_no,phys_addr_t phys_addr,u64 pci_addr, size_t size);
void pci_epc_unmap_addr(struct pci_epc *epc, u8 func_no,phys_addr_t phys_addr);
int pci_epc_set_msi(struct pci_epc *epc, u8 func_no, u8 interrupts);
int pci_epc_get_msi(struct pci_epc *epc, u8 func_no);
int pci_epc_set_msix(struct pci_epc *epc, u8 func_no, u16 interrupts,enum pci_barno, u32 offset);
int pci_epc_get_msix(struct pci_epc *epc, u8 func_no);
int pci_epc_raise_irq(struct pci_epc *epc, u8 func_no,enum pci_epc_irq_type type, u16 interrupt_num);
int pci_epc_start(struct pci_epc *epc);
void pci_epc_stop(struct pci_epc *epc);
const struct pci_epc_features *pci_epc_get_features(struct pci_epc *epc,u8 func_no);
3.3.EP Function Core
EP Function Core层定义了EPF Driver和EPF Device的数据结构,并提供注册、创建及绑定接口。
3.3.1.EPF Driver
EPF Driver的数据结构为struct pci_epf_driver
。当EPF Device和EPC Device绑定后,会回调ops
函数以通知EPF Driver,id_table
定义EPF Driver和EPF Device匹配的信息。pci_epf_register_driver
注册EPF Driver,pci_epf_unregister_driver
注销EPF Driver。
[include/linux/pci-epf.h]
struct pci_epf_driver {int (*probe)(struct pci_epf *epf);int (*remove)(struct pci_epf *epf);struct device_driver driver;struct pci_epf_ops *ops;struct module *owner;struct list_head epf_group;const struct pci_epf_device_id *id_table;
};
struct pci_epf_ops {int (*bind)(struct pci_epf *epf);void (*unbind)(struct pci_epf *epf);
};#define pci_epf_register_driver(driver) \__pci_epf_register_driver((driver), THIS_MODULE)
void pci_epf_unregister_driver(struct pci_epf_driver *driver);
3.3.2.EPF Device
每个EP Function都对应一个EPF Device。EPF Device的数据结构为struct pci_epf_driver
。header
保存了该EP Function配置空间头信息,bar[6]
保存了6个BAR映射的物理地址,msi_interrupts
和msix_interrupts
分别表示EP Function需要的中断数量,func_no
表述EP Function的编号。pci_epf_create
和pci_epf_destroy
创建和销毁EPF Device。
[include/linux/pci-epf.h]
struct pci_epf {struct device dev;const char *name;struct pci_epf_header *header;struct pci_epf_bar bar[6];u8 msi_interrupts;u16 msix_interrupts;u8 func_no;struct pci_epc *epc;struct pci_epf_driver *driver;struct list_head list;struct notifier_block nb;/* mutex to protect against concurrent access of pci_epf_ops */struct mutex lock;
};
struct pci_epf *pci_epf_create(const char *name);
void pci_epf_destroy(struct pci_epf *epf);
3.3.3.EPF Device匹配EPF Driver
pci_epf_bus_type
用于匹配EPF Device和EPF Driver。
[drivers/pci/endpoint/pci-epf-core.c]
static struct bus_type pci_epf_bus_type = {.name = "pci-epf",.match = pci_epf_device_match,.probe = pci_epf_device_probe,.remove = pci_epf_device_remove,
};
3.4.EP Configfs
EP Configfs会在/sys目录下创建文件节点,使用者可以在用户空间通过这些文件节点,配置和创建EPP Device,绑定EPP Device、EPP Driver及EPC Device。
3.5.EP Function Driver。
下面是pci_epf_test的EP Function Driver。
[drivers/pci/endpoint/functions/pci-epf-test.c]
static struct pci_epf_ops ops = {.unbind = pci_epf_test_unbind,.bind = pci_epf_test_bind,
};static struct pci_epf_driver test_driver = {.driver.name = "pci_epf_test",.probe = pci_epf_test_probe,.id_table = pci_epf_test_ids,.ops = &ops,.owner = THIS_MODULE,
};
参考资料
- PCIEXPRESS体系结构导读
- PCI Express technology 3.0
- PCI Express® Base Specification Revision 5.0 Version 1.0
- Rockchip RK3588 TRM
- Linux kernel 5.10