回归预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入单输出回归预测

回归预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入单输出回归预测

目录

    • 回归预测 | MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入单输出回归预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.MATLAB实现基于RF-Adaboost随机森林结合AdaBoost多输入单输出回归预测;
2.运行环境为Matlab2018b;
3.输入多个特征,输出单个变量,多变量回归预测;
4.data为数据集,excel数据,前5列输入,最后1列输出,主程序运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MAE、MAPE多指标评价。

模型描述

RF-Adaboost随机森林结合AdaBoost多输入单输出回归预测是一种基于机器学习和集成学习的预测方法,其主要思想是将随机森林和AdaBoost算法相结合,通过多输入单输出回归模型进行预测。
具体流程如下:
数据预处理:对原始数据进行清洗、归一化和分割等预处理步骤。
特征提取:利用RF模型对数据进行特征提取,得到多个特征向量作为AdaBoost算法的输入。
AdaBoost模型训练:利用AdaBoost算法对多个特征向量进行加权组合,得到最终的预测结果。
模型评估:对预测结果进行评估,包括平均绝对误差(MAE)等指标。
模型优化:根据评估结果对模型进行优化,可以尝试调整模型的参数、改变AdaBoost算法的参数等。
预测应用:将优化后的模型应用于实际预测任务中,进行实时预测。
该方法的优点在于,RF模型可以提取数据特征,而AdaBoost算法可以有效地利用多个特征向量进行加权组合,提高预测准确率。同时,该方法不仅适用于单一数据源的预测任务,也可以应用于多数据源的集成预测任务中。缺点在于,该方法对数据量和计算资源的要求较高,需要大量的训练数据和计算能力。

程序设计

  • 完整源码和数据获取方式:私信回复RF-Adaboost随机森林结合AdaBoost多输入单输出回归预测
%% 预测
t_sim1 = predict(net, p_train); 
t_sim2 = predict(net, p_test ); %%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test  - T_sim2')^2 / norm(T_test  - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1')./T_train));
MAPE2 = mean(abs((T_test - T_sim2')./T_test));disp(['训练集数据的MAPE为:', num2str(MAPE1)])
disp(['测试集数据的MAPE为:', num2str(MAPE2)])%  MBE
mbe1 = sum(abs(T_sim1' - T_train)) ./ M ;
mbe2 = sum(abs(T_sim1' - T_train)) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])%均方误差 MSE
mse1 = sum((T_sim1' - T_train).^2)./M;
mse2 = sum((T_sim2' - T_test).^2)./N;disp(['训练集数据的MSE为:', num2str(mse1)])
disp(['测试集数据的MSE为:', num2str(mse2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/87648.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mac 解决 vscode 权限不足问题,Insufficient permissions

commod 空格,输入终端并打开写入指令 sudo chown -R xxxxxx1 xxxxx2(例如我的sudo chown -R admin Desktop,具体参数查看下方) x1: 用户名,可通过左上角查看 x2: 目标文件夹。可以另起一个终端,用cd 和 l…

vue+element项目创建步骤

一、创建vue项目步骤 要创建一个Vue Element UI的项目,你可以按照以下步骤进行操作: 1.确保你已经安装了Node.js和npm(Node.js的包管理器)。你可以在命令行中运行以下命令来检查它们是否已经安装: node -vnpm -v2.使…

《开发实战》18 | 数据存储:NoSQL与RDBMS如何取长补短、相辅相成?

取长补短之 Redis vs MySQL 做一个简单测试,分别填充 10 万条数据到 Redis 和 MySQL 中。MySQL 中的 name字段做了索引,相当于 Redis 的 Key,data 字段为 100 字节的数据,相当于 Redis 的Value。在我的电脑上,使用 wr…

基于SpringBoot的企业客户管理系统的设计与实现【附PPT|万字文档(LW)和搭建文档】

主要功能 后台登录: 可注册员工:工号、密码、姓名、身份证、手机、邮箱 员工: ①首页、个人中心、修改密码、个人信息 ②客户信息管理、项目信息管理、项目收益管理等 后台登录: 管理员: ①首页、个人中心、修改密码、…

一文了解什么SEO

搜索引擎优化 (SEO) 是一门让页面在 Google 等搜索引擎中排名更高的艺术和科学。 一、搜索引擎优化的好处 搜索引擎优化是在线营销的关键部分,因为搜索是用户浏览网络的主要方式之一。 搜索结果以有序列表的形式呈现,网站在该列表中的排名越高&#x…

小样本规模船型优化策略的选择研究

天洑软件基于自研智能优化软件AIPOD在船舶行业的应用发表论文《小样本规模船型优化策略的选择研究》刊录于核心期刊《中国造船》。全文如下: 小样本规模船型优化策略的选择研究 陈骏喆,姜 栋,张 儒,张 明 (南京天洑…

UniAccess Agent卸载

异常场景: UniAccess Agent导致系统中的好多设置打不开 例如:ipv4的协议,注册表,host等等 需要进行删除,亲测有效,及多家答案平凑的 借鉴了这位大神及他里面引用的大神的内容 https://blog.csdn.net/weixin_44476410/article/details/121605455 问题描述 这个进…

权限提升Linux篇

提权工具 https://github.com/liamg/traitor https://github.com/AlessandroZ/BeRoot https://github.com/rebootuser/LinEnum https://github.com/mzet-/linux-exploit-suggester https://github.com/sleventyeleven/linuxprivchecker https://github.com/jondonas/linux…

Git学习笔记4

GitHub是目前最火的开源项目代码托管平台。它是基于web的Git仓库,提供公有仓库和私有仓库,但私有仓库是需要付费的。 到Github上找类似的项目软件。 GitLab可以创建免费的私有仓库。 GitLab是利用 Ruby开发的一个开源的版本管理系统,实现一个…

如何使用Docker安装最新版本的Redis并设置远程访问(含免费可视化工具)

文章目录 安装Docker安装Redisredis.conf文件远程访问Redis免费可视化工具相关链接Docker是一种开源的应用容器引擎,使用Docker可以让我们快速部署应用环境,本文介绍如何使用Docker安装最新版本的Redis。 安装Docker 首先需要安装Docker,具体的安装方法可以参考Docker官方文…

使用 rtty 进行远程 Linux 维护和调试

rtty 是一个用于在终端上进行远程连接和数据传输的工具。它提供了一种简单的方式来与远程设备进行通信,使得在不同主机之间传输数据变得更加方便。 安装 rtty 是一个可执行程序,可以在 Linux、macOS 和 Windows 等平台上使用。 Linux/macOS 在终端中执…

开发者必备!如何将闲置iPad Pro打造为编程工具,使用VS Code编写代码

文章目录 前言1. 本地环境配置2. 内网穿透2.1 安装cpolar内网穿透(支持一键自动安装脚本)2.2 创建HTTP隧道 3. 测试远程访问4. 配置固定二级子域名4.1 保留二级子域名4.2 配置二级子域名 5. 测试使用固定二级子域名远程访问6. ipad pro通过软件远程vscode6.1 创建TCP隧道 7. ip…

Java-day17(反射)

Reflection(反射) 动态语言的关键 允许程序在执行期借助于Reflection API取得任何类的内部信息,并能直接操作任意对象的内部属性及方法提供的功能: 在运行时判断任意一个对象所属类 在运行时构造任意一个类的对象 在运行时判断任意一个类所具有的成员变量和方法 在…

怒刷LeetCode的第15天(Java版)

目录 第一题 题目来源 题目内容 解决方法 方法一:哈希表双向链表 方法二:TreeMap 方法三:双哈希表 第二题 题目来源 题目内容 解决方法 方法一:二分查找 方法二:线性搜索 方法三:Arrays类的b…

基于SpringBoot的在线文档管理系统

目录 前言 一、技术栈 二、系统功能介绍 管理员功能模块 员工功能模块 三、核心代码 1、登录模块 2、文件上传模块 3、代码封装 前言 随着科学技术的飞速发展,社会的方方面面、各行各业都在努力与现代的先进技术接轨,通过科技手段来提高自身的优势…

ArcGIS 10.3软件安装包下载及安装教程!

【软件名称】:ArcGIS 10.3 【安装环境】:Windows 【下载链接 】: 链接:https://pan.baidu.com/s/1K5ab7IHMYa23HpmuPkFa1A 提取码:oxbb 复制这段内容后打开百度网盘手机App,操作更方便哦 软件解压码点击原文…

java面试题-jvm基础知识

1 JVM组成 1.1 JVM由那些部分组成,运行流程是什么? 难易程度:☆☆☆ 出现频率:☆☆☆☆ JVM是什么 Java Virtual Machine Java程序的运行环境(java二进制字节码的运行环境) 好处: 一次编写&a…

代码随想录算法训练营day6| 哈希表理论基础、242.有效的字母异位词、349. 两个数组的交集、202. 快乐数、1. 两数之和

目录 一、哈希表理论 hash function ​编辑hash collision 常见哈希结构 1)set 2)map 二、(leetcode 242)有效的字母异位词 三、(leetcode 349)两个数组的交集 四、(leetcode 202&…

JAVA学习-全网最详细

🌈write in front🌈 🧸大家好,我是Aileen🧸.希望你看完之后,能对你有所帮助,不足请指正!共同学习交流. 🆔本文由Aileen_0v0🧸 原创 CSDN首发🐒 如…

Linux学习第19天:Linux并发与竞争实例: 没有规矩不成方圆

Linux版本号4.1.15 芯片I.MX6ULL 大叔学Linux 品人间百味 思文短情长 先说点题外话,上周参加行业年会,停更了一周。接下来的周五就要开启国庆中秋双节模式,所以有的时候,尤其是工作以后…