【人工智能】Transformers之Pipeline(五):深度估计(depth-estimation)

目录

一、引言 

二、深度估计(depth-estimation)

2.1 概述

2.2 技术路径

2.3 应用场景

2.4 pipeline参数

2.4.1 pipeline对象实例化参数

2.4.2 pipeline对象使用参数 

2.4 pipeline实战

2.5 模型排名

三、总结


一、引言 

 pipeline(管道)是huggingface transformers库中一种极简方式使用大模型推理的抽象,将所有大模型分为音频(Audio)、计算机视觉(Computer vision)、自然语言处理(NLP)、多模态(Multimodal)等4大类,28小类任务(tasks)。共计覆盖32万个模型

今天介绍CV计算机视觉的第一篇,深度估计(depth-estimation),在huggingface库内有106个图片深度估计的模型。

二、深度估计(depth-estimation)

2.1 概述

深度估计是一种计算机视觉任务,旨在从2D图像估计深度。该任务需要输入RGB图像并输出深度图像。深度图像包括关于从视点到图像中的物体的距离的信息,该视点通常是拍摄图像的相机。

2.2 技术路径

2014年之前,采用传统的方法进行深度估计,2014年之后采用深度学习方法,同时分为监督和半监督/无监督两条roadmap。

首先看一下基于深度学习方法depth-estimation的开山之作Depth Map Prediction from a Single Image using a Multi-Scale Deep Network

模型架构使用堆叠的卷积层预测,该论文发表于2014年,早于VGG,所以网络结构遵循AlexNet的设计。其希望捕捉全局信息和布局信息,蓝色框部分用于得到粗略的全局信息,而且Coarse 5和Coarse 6部分使用的是全连接层;橙色框部分处理原图和得到的全局信息,最终预测得到深度图。训练过程分为两步,第一步先训练coarse网络,然后冻结之后再训练fine网络。 

再看2024年较火的由港大&字节提出用于任意图像的深度估计大模型:Depth Anything

  • 首先, 基于数据集 Dl 学习一个老师模型 T;
  • 然后, 利用 T 为数据集 Du 赋予伪标签;
  • 最后, 基于两个数据训练一个学生模型 S 。

2.3 应用场景

  • 自动驾驶与机器人导航:在自动驾驶车辆和各种服务机器人中,通过单目摄像头获取环境图像,估计出前方或周围物体的距离,对于避障、路径规划至关重要。
  • 增强现实(AR):在AR应用中,准确估计摄像头与现实世界之间的深度关系,是实现虚拟物体与真实环境无缝融合的关键。
  • 3D建模与重建:从单目视频或图像序列中估计深度,可以用于构建场景的3D模型,应用于考古、建筑、室内设计等领域。
  • 无人机导航与避障:无人机在执行复杂飞行任务时,需要实时理解周围环境的深度信息,单目深度估计可以提供这种能力,尤其是在成本和重量敏感的应用中。
  • 物体识别与抓取:在机器人操作和自动化仓库系统中,单目深度估计帮助机器人准确识别和抓取物体,提高自动化效率。
  • 地形测绘:在无人机遥感、农业监测等应用中,单目相机结合其他传感器数据,可以辅助进行地形的快速测绘和分析。

2.4 pipeline参数

2.4.1 pipeline对象实例化参数

  • model(PreTrainedModel或TFPreTrainedModel)— 管道将使用其进行预测的模型。 对于 PyTorch,这需要从PreTrainedModel继承;对于 TensorFlow,这需要从TFPreTrainedModel继承。
  • image_processor ( BaseImageProcessor ) — 管道将使用的图像处理器来为模型编码数据。此对象继承自 BaseImageProcessor。
  • modelcardstrModelCard可选)— 属于此管道模型的模型卡。
  • frameworkstr可选)— 要使用的框架,"pt"适用于 PyTorch 或"tf"TensorFlow。必须安装指定的框架。
  • taskstr,默认为"")— 管道的任务标识符。
  • num_workersint可选,默认为 8)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的工作者数量。
  • batch_sizeint可选,默认为 1)— 当管道将使用DataLoader(传递数据集时,在 Pytorch 模型的 GPU 上)时,要使用的批次的大小,对于推理来说,这并不总是有益的,请阅读使用管道进行批处理。
  • args_parser(ArgumentHandler,可选) - 引用负责解析提供的管道参数的对象。
  • deviceint可选,默认为 -1)— CPU/GPU 支持的设备序号。将其设置为 -1 将利用 CPU,设置为正数将在关联的 CUDA 设备 ID 上运行模型。您可以传递本机torch.devicestr
  • torch_dtypestrtorch.dtype可选) - 直接发送model_kwargs(只是一种更简单的快捷方式)以使用此模型的可用精度(torch.float16,,torch.bfloat16...或"auto"
  • binary_outputbool可选,默认为False)——标志指示管道的输出是否应以序列化格式(即 pickle)或原始输出数据(例如文本)进行。

2.4.2 pipeline对象使用参数 

  • imagesstrList[str]PIL.ImageList[PIL.Image]——管道处理三种类型的图像:
    • 包含指向图像的 http 链接的字符串
    • 包含图像本地路径的字符串
    • 直接在 PIL 中加载的图像

    管道可以接受单张图片或一批图片,然后必须以字符串形式传递。一批图片必须全部采用相同的格式:全部为 http 链接、全部为本地路径或全部为 PIL 图片。

  • timeout可选float,默认为 None)— 等待从网络获取图像的最长时间(以秒为单位)。如果为 None,则不设置超时,并且调用可能会永远阻塞。

2.4 pipeline实战

将http链接中的两只猫咪图片进行深度估计

采用pipeline代码如下

import os
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
os.environ["CUDA_VISIBLE_DEVICES"] = "2"from transformers import pipeline
depth_estimator = pipeline(task="depth-estimation", model="LiheYoung/depth-anything-base-hf")
output = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg")
output["depth"].save("depth.png")
print(output)

output中的结果为

{'predicted_depth': tensor([[[26.3997, 26.3004, 26.3929,  ..., 24.8488, 24.9059, 20.0686],[26.2260, 26.2093, 26.3428,  ..., 24.8447, 24.6682, 24.6084],[26.0719, 26.0483, 26.1255,  ..., 24.7053, 24.6745, 24.5809],...,[43.2635, 43.2344, 43.2892,  ..., 39.0545, 39.2170, 39.0817],[43.3637, 43.2703, 43.3899,  ..., 39.1390, 38.9937, 39.0317],[38.7509, 43.2192, 43.4387,  ..., 38.5407, 38.3691, 35.3691]]]), 'depth': <PIL.Image.Image image mode=L size=640x480 at 0x7FAA9F2E5CD0>}

将Image类型的图片保存并打开

基于此深度估计图片,我们可以进行上色等处理。 

2.5 模型排名

在huggingface上,我们将深度估计(depth-estimation)模型按下载量从高到低排序:

三、总结

本文对transformers之pipeline的深度估计(depth-estimation)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的代码极简的使用计算机视觉中的深度估计(depth-estimation)模型,应用于3D建模、自动驾驶距离测算等。

期待您的3连+关注,如何还有时间,欢迎阅读我的其他文章:

《Transformers-Pipeline概述》

【人工智能】Transformers之Pipeline(概述):30w+大模型极简应用

《Transformers-Pipeline 第一章:音频(Audio)篇》

【人工智能】Transformers之Pipeline(一):音频分类(audio-classification)​​​​​​​

【人工智能】Transformers之Pipeline(二):自动语音识别(automatic-speech-recognition)

【人工智能】Transformers之Pipeline(三):文本转音频(text-to-audio/text-to-speech)

【人工智能】Transformers之Pipeline(四):零样本音频分类(zero-shot-audio-classification)​​​​​​​

《Transformers-Pipeline 第二章:计算机视觉(CV)篇》

【人工智能】Transformers之Pipeline(五):深度估计(depth-estimation)

【人工智能】Transformers之Pipeline(六):图像分类(image-classification)

【人工智能】Transformers之Pipeline(七):图像分割(image-segmentation)

【人工智能】Transformers之Pipeline(八):图生图(image-to-image)

【人工智能】Transformers之Pipeline(九):物体检测(object-detection)

【人工智能】Transformers之Pipeline(十):视频分类(video-classification)

【人工智能】Transformers之Pipeline(十一):零样本图片分类(zero-shot-image-classification)

【人工智能】Transformers之Pipeline(十二):零样本物体检测(zero-shot-object-detection)

《Transformers-Pipeline 第三章:自然语言处理(NLP)篇》

【人工智能】Transformers之Pipeline(十三):填充蒙版(fill-mask)

【人工智能】Transformers之Pipeline(十四):问答(question-answering)

【人工智能】Transformers之Pipeline(十五):总结(summarization)

【人工智能】Transformers之Pipeline(十六):表格问答(table-question-answering)

【人工智能】Transformers之Pipeline(十七):文本分类(text-classification)

【人工智能】Transformers之Pipeline(十八):文本生成(text-generation)

【人工智能】Transformers之Pipeline(十九):文生文(text2text-generation)

【人工智能】Transformers之Pipeline(二十):令牌分类(token-classification)

【人工智能】Transformers之Pipeline(二十一):翻译(translation)

【人工智能】Transformers之Pipeline(二十二):零样本文本分类(zero-shot-classification)

《Transformers-Pipeline 第四章:多模态(Multimodal)篇》

【人工智能】Transformers之Pipeline(二十三):文档问答(document-question-answering)

【人工智能】Transformers之Pipeline(二十四):特征抽取(feature-extraction)

【人工智能】Transformers之Pipeline(二十五):图片特征抽取(image-feature-extraction)

【人工智能】Transformers之Pipeline(二十六):图片转文本(image-to-text)

【人工智能】Transformers之Pipeline(二十七):掩码生成(mask-generation)

【人工智能】Transformers之Pipeline(二十八):视觉问答(visual-question-answering)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/875143.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mysql JSON特性优化

有朋友问到&#xff0c;mysql如果要根据json中的某个属性过滤&#xff0c;数据量大的话&#xff0c;性能很差&#xff0c;要如何提高性能&#xff1f; 为什么要用json串&#xff1f; 由于一些特定场景&#xff0c;mysql需要用到json串&#xff0c;例如文档&#xff0c;不同的…

详解Stable Diffusion 原理图

参考英文文献&#xff1a;The Illustrated Stable Diffusion – Jay Alammar – Visualizing machine learning one concept at a time. 在这个Stable Diffusion模型的架构图中&#xff0c;VAE&#xff08;变分自编码器&#xff09;模型对应的是图中的 E 和 D 部分。 具体来说…

【BUG】已解决:NameError: name ‘python‘ is not defined

NameError: name ‘python‘ is not defined 目录 NameError: name ‘python‘ is not defined 【常见模块错误】 【解决方案】 欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 欢迎来到我的主页&#xff0c;我是博主英杰&#xff0c;211科班出身&#xff0c;就职于…

深入学习STL标准模板库

C STL standard template libaray 标准模板库 目录 C STL standard template libaray 标准模板库 一、标准容器顺序容器vectordequelistvector deque list对比 容器适配器stackqueuepriority_queue 关联容器(1)无序关联容器unordered_setunordered_multisetunordered_mapunorde…

Cxx Primer-chap7

类的基本思想是数据抽象和封装&#xff0c;前者强调interface和implement分离&#xff0c;后者在此基础上&#xff0c;强调访问控制符&#xff08;存疑&#xff09;。同时类的实现者和使用者考虑的角度不同&#xff0c;前者考虑实现效率&#xff0c;后者仅需关注功能即可&#…

C++相关概念和易错语法(23)(set、仿函数的应用、pair、multiset)

1.set和map存在的意义 &#xff08;1&#xff09;set和map的底层都是二叉搜索树&#xff0c;可以达到快速排序&#xff08;当我们按照迭代器的顺序来遍历set和map&#xff0c;其实是按照中序来遍历的&#xff0c;是排过序的&#xff09;、去重、搜索的目的。 &#xff08;2&a…

与众不同的社交体验:Facebook的新功能与新变化

在快速变化的社交媒体领域&#xff0c;Facebook不断引入创新功能和变化&#xff0c;以满足用户日益增长的需求&#xff0c;并提供与众不同的社交体验。从增强现实到数据隐私&#xff0c;Facebook的新功能和更新正在塑造一个全新的社交平台。本文将深入探讨这些新功能和变化&…

arm环境下构建Flink的Docker镜像

准备工作 资源准备 按需下载 flink&#xff0c;我的是1.17.2版本。官方说1.13版本之后的安装包兼容了arm架构&#xff0c;所以直接下载就行。 如需要cdc组件&#xff0c;提前下载好。 服务器准备 可在某云上购买arm服务器&#xff0c;2c/4g即可&#xff0c;按量付费。 带宽…

谷粒商城实战笔记-43-前端基础-Vue-使用Vue脚手架进行模块化开发

文章目录 一&#xff0c;Vue的模块化开发1&#xff0c;目录结构2&#xff0c;单文件组件 (SFC)3&#xff0c;模块化路由4&#xff0c;Vuex 模块5&#xff0c;动态组件和异步组件6&#xff0c;抽象和复用7&#xff0c;构建和打包8&#xff0c;测试9&#xff0c;文档和注释10&…

Nginx反向代理概述

正向代理与反向代理概述 正向代理&#xff1a; 定义&#xff1a;正向代理位于客户端和目标服务器之间&#xff0c;客户端的请求首先发送到代理服务器&#xff0c;然后由代理服务器转发到目标服务器&#xff0c;最后将目标服务器的响应返回给客户端。 作用&#xff1a;正向代理…

Linux - 进程的概念、状态、僵尸进程、孤儿进程及进程优先级

目录 进程基本概念 描述进程-PCB task_struct-PCB的一种 task_struct内容分类 查看进程 通过系统目录查看 通过ps命令查看 通过系统调用获取进程的PID和PPID 通过系统调用创建进程- fork初始 fork函数创建子进程 使用if进行分流 Linux进程状态 运行状态-R 浅度睡眠状态-S…

uni-app:踩坑路---关于使用了transform导致fixed定位不生效的问题

前言&#xff1a; 继续记录&#xff0c;在上篇文章中&#xff0c;弹出框遮罩层在ios上没有正确的铺盖全屏&#xff0c;是因为机型的原因&#xff0c;也和我们的代码结构有相关的问题。今天再来展示另外一个奇葩的问题。 这次我使用了在本篇博客中的弹出框组件CustomDialog.vue…

《昇思25天学习打卡营第19天|基于MobileNetv2的垃圾分类》

基于MobileNetv2的垃圾分类 本文档主要介绍垃圾分类代码开发的方法。通过读取本地图像数据作为输入&#xff0c;对图像中的垃圾物体进行检测&#xff0c;并且将检测结果图片保存到文件中。 1、实验目的 了解熟悉垃圾分类应用代码的编写&#xff08;Python语言&#xff09;&a…

【C++】:AVL树的深度解析及其实现

目录 前言一&#xff0c;AVL树的概念二&#xff0c;AVL树节点的定义三&#xff0c;AVL树的插入3.1 第一步3.2 第二步 四&#xff0c;AVL树的旋转4.1 右单旋4.2 左单旋4.3 右左双旋4.4 左右双旋4.5 插入代码的完整实现4.6 旋转总结 五&#xff0c;AVL树的验证六&#xff0c;实现…

插入和选择排序

1.1直接插入排序 void InsertSort(int* a, int n) {for (int i 1; i < n - 1; i) {//i的范围要注意的&#xff0c;防止指针越界int end i;int tmp a[end 1];while (end>0) {if (tmp< a[end]) {a[end 1] a[end];//小于就挪动&#xff0c;虽然会覆盖后面空间的值…

【Linux】通过分配虚拟内存的方式来解决因内存不够而导致部署的项目自动挂掉

多个 jar 包项目部署在同一台服务器上&#xff0c;当服务器配置低&#xff0c;内存不足时&#xff0c;有可能出现 nohup java -jar 启动的进程就莫名其妙挂掉的问题。 解决方式&#xff1a; 第一种方法&#xff1a;进行JVM调优可以改善这种情况&#xff0c;但是项目太多&…

【Android】安卓四大组件之广播知识总结

文章目录 动态注册使用BroadcastReceiver监听Intent广播注册Broadcast Receiver 静态注册自定义广播标准广播发送广播定义广播接收器注册广播接收器 有序广播修改发送方法定义第二个广播接收器注册广播接收器广播截断 使用本地广播实践-强制下线使用ActivityCollector管理所有活…

sql注入 mysql 执行命令 sql注入以及解决的办法

我们以前很可能听过一个词语叫做SQL注入攻击&#xff0c;其是威胁我们系统安全的最危险的因素之一&#xff0c;那么到底什么是SQL注入攻击呢&#xff1f;这里我会用一个最经典最简单的例子来跟大家解释一下&#xff1a; 众所周知&#xff0c;我们的sql语句都是有逻辑的&#xf…

STM32之九:ADC模数转换器

目录 1. 简介 2. ADC 2.1 逐次逼近型寄存器SAR 2.2 ADC转换时间 3 ADC框图 3.1 8 bit ADC0809芯片内部框图 3.2 ADC框图 3.2.1 注入通道和规则通道 3.2.2 单次/连续转换模式 3.2.3 扫描模式 3.2.4 外部触发转换 3.2.5 数据对齐 3.2.6 模拟看门狗 4. 总结和ADC驱…

MYSQL ODBC驱动安装时的注意事项

今天想使用MYSQL的ODBC驱动连接数据库。 安装的时候遇到一个大坑&#xff0c;在这里记录一下。 window 64位的操作&#xff0c;要安装64位驱动&#xff0c;这个大家都知道了。 有以下的问题要注意区别的。 1 、windows是64位的&#xff0c;但是开发软件是32位的。 这个时候…