参考文献 代码随想录
一、找树左下角的值
给定一个二叉树的 根节点 root
,请找出该二叉树的 最底层 最左边 节点的值。
假设二叉树中至少有一个节点。
示例 1:
输入: root = [2,1,3] 输出: 1
示例 2:
输入: [1,2,3,4,null,5,6,null,null,7] 输出: 7
层次遍历:收集每一层的结果,然后取最后一层的第一个值
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution(object):def findBottomLeftValue(self, root):""":type root: TreeNode:rtype: int"""# 层次遍历from collections import dequequeen = deque() # 使用队列存储数据ans = deque() # 存放每层的结果if root:queen.append(root)while queen:count = len(queen) # 记录每层的个数tmp = [] # 暂时存放每一层的结果while count: # 出队列node = queen.popleft()# 收集结果tmp.append(node.val)# 收集每层的结果,左边和右边同时收集,为什么能呢,因为count是记录着每一层的节点数,这样才能控制要收集左右孩子多少个if node.left:queen.append(node.left) # 判断左边是右值,如果有,则进入队列if node.right:queen.append(node.right)count -= 1# 把每一层的结果放入最后的结果集中ans.append(tmp)return ans[len(ans) - 1][0]
前序遍历:求所以路径
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution(object):def findBottomLeftValue(self, root):""":type root: TreeNode:rtype: int"""# 层次遍历from collections import dequetmp = [] # 使用队列存储数据ans = [0 for _ in range(10001)] # 存放每层的结果,为什么要初始化呢,因为我们存储的是每一条路基,而我们只需要输出最长路径并且是最左边的,ans[i]代表的是路径长度为i的路径ans[i]if not root:return 0def dfs(cur):if not cur: # 说明当前节点为零return 0# 中tmp.append(cur.val) # 收集每条路的节点if not cur.left and not cur.right: # 说明到了叶子节点if not ans[len(tmp)]: # 因为这个遍历的顺序是中左右,所以先收集的结果是左边的,为了防止长度相等的路,所以一旦有值,就不重新赋值了,这样就收集了长度相等的最左边的ans[len(tmp)] = tmp[:]return # 左 tmp = [1, 2]if cur.left: # 判断左边是否有左孩子,如果有,那么就一直到低,碰到叶子节点就回收dfs(cur.left) # 结束收集左边的节点,如果遇到了那么本次的循环就终止掉,然后到上一层循环,因为这个递归是一个套娃的左右就像 f(f(f(f(x)))),无限的套进去,最里面的函数终止了,说明就不往下走了,那么就开始执行每次的函数,第一次函数是执行2,然在到1,tmp.pop() # 回溯 然后回退一个,if cur.right: # 判断回退的这个节点是否有有孩子,如果有那就往右边找,如果没有,那么将会进入到有没有左孩子dfs(cur.right,)tmp.pop()dfs(root)for i in range(10000, -1, -1):if ans[i]:return ans[i][-1]
递归:
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution(object):def findBottomLeftValue(self, root):""":type root: TreeNode:rtype: int"""""" 问题分析:首先是最底层,然后是左节点,然后判断是否到底最底层呢,就是你比较每次的深度大小,然后只收集最大的叶子点的值"""self.maxD = float("-inf") # 存放的是每次最大深度的结果 self.resul = None # 存放的是最后的结果# deepth = 0 # 记录每次的叶子长度if not root:return 0self.dfs(root, 0)return self.resuldef dfs(self, cur, deepth):# 没有返回if not cur.left and not cur.right: # 对比深度,大的话,就跟新result值if deepth > self.maxD:self.maxD = deepthself.resul = cur.valreturn # 左if cur.left:self.dfs(cur.left, deepth + 1)if cur.right:self.dfs(cur.right, deepth + 1)
二、路径总和
给你二叉树的根节点 root
和一个表示目标和的整数 targetSum
。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum
。如果存在,返回 true
;否则,返回 false
。
叶子节点 是指没有子节点的节点。
示例 1:
输入:root = [5,4,8,11,null,13,4,7,2,null,null,null,1], targetSum = 22 输出:true 解释:等于目标和的根节点到叶节点路径如上图所示。
递归:
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution(object):def hasPathSum(self, root, targetSum):""":type root: TreeNode:type targetSum: int:rtype: bool"""self.tmp = []self.r = []if not root:return Falseself.dfs(root)if targetSum in self.r:return Truereturn Falsedef dfs(self, root):if not root:return 0self.tmp.append(root.val)if not root.left and not root.right:self.r.append(sum(self.tmp))if root.left:self.dfs(root.left)self.tmp.pop()if root.right:self.dfs(root.right)self.tmp.pop()
递归简化版:
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution(object):def hasPathSum(self, root, targetSum):""":type root: TreeNode:type targetSum: int:rtype: bool"""self.f = Falseself.r = targetSumif not root:return Falseself.dfs(root, root.val)return self.fdef dfs(self, root, tmp):if not root:return 0if not root.left and not root.right:if tmp == self.r:self.f = Trueif root.left:self.dfs(root.left, tmp + root.left.val) # tmp + root.left.val回溯,因为递归解释回溯if root.right:self.dfs(root.right, tmp + root.right.val)
三、路径总和 II
给你二叉树的根节点 root
和一个整数目标和 targetSum
,找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。
叶子节点 是指没有子节点的节点。
示例 1:
输入:root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22 输出:[[5,4,11,2],[5,8,4,5]]
示例 2:
输入:root = [1,2,3], targetSum = 5 输出:[]
示例 3:
输入:root = [1,2], targetSum = 0 输出:[]
问题分析:前序遍历,一个统计和,一个统计节点
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution(object):def pathSum(self, root, targetSum):""":type root: TreeNode:type targetSum: int:rtype: List[List[int]]"""# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = rightself.tmp = []self.r = targetSumif not root:return []self.dfs(root, root.val, [int(root.val)])return self.tmpdef dfs(self, root, tmp, tl):if not root:return 0if not root.left and not root.right:if tmp == self.r:self.tmp.append(tl)if root.left:self.dfs(root.left, tmp + root.left.val, tl + [root.left.val]) # tmp + root.left.val回溯,因为递归解释回溯if root.right:self.dfs(root.right, tmp + root.right.val, tl + [root.right.val])
四、从中序与后序遍历序列构造二叉树
给定两个整数数组 inorder
和 postorder
,其中 inorder
是二叉树的中序遍历, postorder
是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。
示例 1:
输入:inorder = [9,3,15,20,7], postorder = [9,15,7,20,3] 输出:[3,9,20,null,null,15,7]
示例 2:
输入:inorder = [-1], postorder = [-1] 输出:[-1]
提示:
1 <= inorder.length <= 3000
postorder.length == inorder.length
-3000 <= inorder[i], postorder[i] <= 3000
inorder
和postorder
都由 不同 的值组成postorder
中每一个值都在inorder
中inorder
保证是树的中序遍历postorder
保证是树的后序遍历
class Solution:def buildTree(self, inorder: List[int], postorder: List[int]) -> TreeNode:# 第一步: 特殊情况讨论: 树为空. (递归终止条件)if not postorder:return None# 第二步: 后序遍历的最后一个就是当前的中间节点.root_val = postorder[-1]root = TreeNode(root_val)# 第三步: 找切割点.separator_idx = inorder.index(root_val)# 第四步: 切割inorder数组. 得到inorder数组的左,右半边.inorder_left = inorder[:separator_idx]inorder_right = inorder[separator_idx + 1:]# 第五步: 切割postorder数组. 得到postorder数组的左,右半边.# ⭐️ 重点1: 中序数组大小一定跟后序数组大小是相同的.postorder_left = postorder[:len(inorder_left)]postorder_right = postorder[len(inorder_left): len(postorder) - 1]# 第六步: 递归root.left = self.buildTree(inorder_left, postorder_left)root.right = self.buildTree(inorder_right, postorder_right)# 第七步: 返回答案return root