Calibration相机内参数标定

1.环境依赖

本算法采用张正友相机标定法进行实现,内部对其进行了封装。

环境依赖为 ubuntu20.04 + opencv4.2.0 + yaml-cpp

yaml-cpp安装方式:

(1)git clone https://github.com/jbeder/yaml-cpp.git #将yaml-cpp下载至本地

(2)进入下载目录中,mkdir build && cd build #构建build文档

(3)cmake .. #使用cmake构建

(4)sudo make install #安装yaml-cpp

仓库下载:

git clone https://gitee.com/BingbingSuperEffort/calibration.git

2.使用方式

使用cmake构建执行文件

mkdir build && cd build && cmake.. && make

编译的可执行文件为Calibration,使用时运行该文件并配备图片文件夹路径作为参数,该文件夹内部为相机拍摄的不同角度与不同高度的棋盘照片。

使用示例:./Calibration ./test-jpg

3.配置文件

配置文件为config.yaml 内部包含如下配置:

(1)chess_row,chess_col 棋盘格行列个数:该参数表示相机标定使用的黑白棋盘格的行和列上的方格个数,请确保行列正确

(2)square_size 棋盘方格大小:该参数表示每个黑白方格的长度数值

(3)image_path 读取文件路径记录名:该参数为读取的含有棋盘的具体图片的路径名称记录,可以查阅本次标定具体使用了哪些图片,参数以弃用,不在输出路径记录文档。

(4)image_suffix 图片名称后缀:该参数表面在文件夹中查找哪种类型的图片参数,支持jpg与png格式,参数以弃用。内部将直接搜索文件夹中.jpg.png格式的所有图片

(5)camera_matrix_file 输出文件名:该参数指定了yaml格式的输出文件,文件内部包含测定后的内参数的具体数值

(6)output_detail 是否输出更详细的数据参数:默认为false,不输出更详细的参数,设置为true将输出每张图片的像素误差,以及整体误差等详细的参数,会将结果保存到camera_result_detail.txt 文件中

(7)camera_type标定相机的具体类型,CV为普通相机,FISHEYE为鱼眼相机

(8)downsample是否降采样采取角点,处理像素高的照片速度快,像素低可能会检测不到角点,导致评定失败,默认为true

(9)show_draw是否显示角点绘制过程,默认为false,在处理大文件时应当关闭,避免卡死

(10)undistort是否对图像实现畸变矫正,并显示矫正后的效果,默认为false

(11)test_image_path实现畸变矫正的测试图片路径,仅在undistort为true时有效

4.输出文件

image_path.txt 测定的具体图片的名称路径

camera_matrix.yaml 相机内参数fx,fy,cx,cy,畸变系数k1,k2,p1,p2,p3(或者k1,k2,u1,u2),图片长宽。

camera_result_detail.txt 相机测定具体的数值,包含每幅图片的标定误差,总体平均误差,每幅图像的畸变系数。只有在配置文件中设置才会输出该文件。

5.标定流程

6.文件介绍

各个文件简要说明:

main.cpp:主要为接口函数,以及一些接口参数的设置。编译成为可执行文件后,在使用时传入测定图片的文件夹路径

CCalibration类实现摄像机标定功能,calibration.run()执行读取标定板图片、角点检测、亚像素精确化、摄像机标定、计算重投影误差、保存标定参数功能;

CUndistort类实现畸变校正功能,undistort.run()执行读取内部参数、读取畸变图像、畸变校正、显示校正结果功能。执行时默认不进行畸变校正,如需打开请在config.yaml中将undistort参数设置为true。

calibration.h, calibration.cpp:实现摄像机标定,包含CV模型和Fisheye模型。默认为CV模型,如需更换为Fisheye模型,请在config.yaml中将camera_type参数设置为FISHEYE。

undistort.h, undistort.cpp:实现畸变校正,包含CV模型和Fisheye模型。如需更换为Fisheye模型,请在config.yaml中将camera_type参数设置为FISHEYE。

7.使用函数

1.findChessboardCorners()角点提取函数。

函数功能:

该函数的功能就是判断图像内是否包含完整的棋盘图,如果能够检测完全,就把他们的角点坐标按 顺序(逐行,从左到右)记录下来,并返回非0数,否则返回0。 这里对size参数要求非常严格,函数必须检测到相同的size才会返回非0,否则返回0。

函数原型:

bool cv::findChessboardCorners ( InputArray image,
Size patternSize,
OutputArray corners,
int flags = CALIB_CB_ADAPTIVE_THRESH+CALIB_CB_NORMALIZE_IMAGE
);

参数介绍:

image输入的棋盘格原图。必须是8位灰度图或者彩色图像

patternSize棋盘格图片的每一行每一列的内角点数

corners输出检测到的角点阵列

flags标志位,默认为0

2.find4QuadCornerSubpix()亚像素角点提取函数

函数功能:

该函数的目的是提高角点检测的精度,特别是当使用亚像素精度进行定位时。在图像中,四角形的角点可能因为各种因素(如图像噪声、模糊等)而不完全清晰。find4QuadCornerSubpix() 函数通过在角点附近进行更细致的搜索,来提高角点的定位精度。

函数原型:

bool cv::find4QuadCornerSubpix(InputArray image, 
InputOutputArray corners, 
Size region_size);

参数介绍:

img输入图片矩阵

corners初始的角点坐标

region_size角点搜索窗口大小

3.drawChessboardCorners()角点绘制函数

函数功能:

该函数的主要作用是帮助用户直观地展示检测到的棋盘格角点位置,以便于调试和验证。

函数原型:

void cv::drawChessboardCorners(InputOutputArray image, 
Size patternSize, 
const Mat& corners, 
bool patternWasFound);

参数介绍:

imagecv::Mat& 类型,这是要在其上绘制角点的输出图像。函数执行后,图像上会显示棋盘格的角点。

patternSizecv::Size& 类型,这是一个 cv::Size 结构,表示棋盘格的内部角点数。

corners const std::vector<cv::Point2f>& 类型,这是一个包含棋盘格角点坐标的向量。这些坐标通过角点检测算法(如 findChessboardCorners())获得。

patternWasFoundbool 类型,一个布尔值,指示棋盘格模式是否被成功检测。如果 true,角点将被绘制;如果 false,角点将不会被绘制。

4.calibrateCamera()相机标定函数

函数功能:

该函数用于相机标定,即确定相机的内参和(可选)外参。相机内参包括焦距、主点坐标和畸变系数,而外参则包括相机相对于某一特定坐标系的位置和旋转

函数原型:

double cv::calibrateCamera ( InputArrayOfArrays objectPoints,
InputArrayOfArrays imagePoints,
Size imageSize,
InputOutputArray cameraMatrix,
InputOutputArray distCoeffs,
OutputArrayOfArrays rvecs,
OutputArrayOfArrays tvecs,
int flags = 0,
TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, DBL_EPSILON)
);

参数介绍:

objectPoints一系列角点的三维坐标。

imagesPoints角点投影到标定图案平面上的二维坐标点。

imageSize图片的尺寸大小,用以初始化相机内参。

cameraMatrix相机的内参矩阵。

distCoeffs相机的畸变参数矩阵,有5个畸变参数:k1,k2,p1,p2,k3

rvecs旋转向量

tvecs平移向量

flags表示标定时采用的算法,默认为0
criteria迭代的终止条件,通常忽略

5.projectPoints()重投影函数

函数功能:

根据相机的内参(焦距和主点坐标)和畸变系数,将三维点转换为图像上的二维点。对计算结果进行评定。

函数原型:

void cv::projectPoints ( InputArray objectPoints,
OutputArray imagePoints,
InputArray rvec,
InputArray tvec,
InputArray K,
InputArray D,
double alpha = 0,
OutputArray jacobian = noArray()
);

参数介绍:

objectPoints对象点的数组

imagesPoints若干张图片对应的若干的内角点的坐标

rvecs旋转向量

tvecs平移向量

K内参矩阵

D畸变矩阵

alpha偏斜系数

jacobian是否计算雅可比矩阵

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/872417.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深度解析:disableHostCheck: true引发的安全迷局与解决之道

在Web开发的浩瀚星空中&#xff0c;开发者们时常会遇到各种配置与调优的挑战&#xff0c;其中disableHostCheck: true这一选项&#xff0c;在提升开发效率的同时&#xff0c;也悄然埋下了安全隐患的伏笔。本文将深入探讨这一配置背后的原理、为何会引发报错&#xff0c;以及如何…

深度学习落地实战:基于GAN(生成对抗网络)生成图片

前言 大家好&#xff0c;我是机长 本专栏将持续收集整理市场上深度学习的相关项目&#xff0c;旨在为准备从事深度学习工作或相关科研活动的伙伴&#xff0c;储备、提升更多的实际开发经验&#xff0c;每个项目实例都可作为实际开发项目写入简历&#xff0c;且都附带完整的代…

Qt会议室项目

在Qt中编写会议室应用程序通常涉及到用户界面设计、网络通信、音频/视频处理等方面。以下是创建一个基本会议室应用程序的步骤概述&#xff1a; 项目设置&#xff1a; 使用Qt Creator创建一个新的Qt Widgets Application或Qt Quick Application项目。 用户界面设计&#xff1…

docker 启动提示can not create sys fs cgroup cpuset....问题处理

docker 启动失败 报错 大概报错内容为 cgroup :no such file can not create /sys/fs/cgroup/cpuset … 问题是因为 /sys/fs/cgroup/ 没有被正确挂载 cgroup 是实现资源限制的工具 docker 能够进行限制cpu 内存 大小 依赖cgroup ll /sys/fs/cgroup/ 发现一个都系也没有 m…

牛客TOP101:合并k个已排序的链表

文章目录 1. 题目描述2. 解题思路3. 代码实现 1. 题目描述 2. 解题思路 多个链表的合并本质上可以看成两个链表的合并&#xff0c;只不过需要进行多次。最简单的方法就是一个一个链表&#xff0c;按照合并两个有序链表的思路&#xff0c;循环多次就可以了。   另外一个思路&a…

(c++)virtual关键字的作用,多态的原理(详细)

1.viirtual修饰的两种函数 virtual 修饰的函数有两种&#xff0c;一个是虚函数&#xff0c;一个是纯虚函数。 2.虚函数与纯虚函数的异同之处 1.虚函数与纯虚函数的相同之处 虚函数和纯虚函数都重写的一种&#xff0c;什么是重写呢&#xff1f;重写是指在子类中写和父类中返…

第14章 处理用户输入《Linux命令行与Shell脚本编程大全笔记》

位置参数&#xff1a;$0是脚本名&#xff0c;$1对应第一个参数…参数中间包含空格要用双引号basename命令&#xff1a;返回不包含路径的脚本名。示例name$(basename $0)特殊参数变量&#xff1a; ①$#&#xff1a;统计脚本运行时携带的参数个数 ②${!#}&#xff1a;返回最后一个…

《0基础》学习Python——第十四讲__封装、继承、多态

<封装、继承、多态> 一、类和实例解析 1、面向对象最重要的概念就是类&#xff08;Class&#xff09;和实例&#xff08;Instance&#xff09;&#xff0c;必须牢记类是抽象的模板 &#xff0c;比如Student类&#xff0c;而 实例是根据类创建出来的一个个具体的“对象”…

day2 上下文Context

文章目录 使用效果设计Context路由(Router)框架入口 本文代码地址&#xff1a;day2 上下文Context 本文是 7天用Go从零实现Web框架Gee教程系列的第二篇。 主要内容如下&#xff1a; 将路由(router)独立出来&#xff0c;方便之后增强。设计上下文(Context)&#xff0c;封装 R…

04.阻塞赋值和非阻塞赋值

1.阻塞赋值 阻塞赋值的赋值号是用""表示,对应的电路结构往往与触发沿没有关系,只与输入电平的变化有关系.它的操作结构可以认为是只有一个步骤的操作,即计算赋号右边的语句并更新赋值号左边的语句,此时不允许有来自任何其他verilog语句的干扰,直到现行的赋值完成,才…

释放Conda通道束缚:启用自由通道恢复的终极指南

释放Conda通道束缚&#xff1a;启用自由通道恢复的终极指南 在Conda的生态中&#xff0c;通道&#xff08;channels&#xff09;是包来源的路径&#xff0c;而自由通道&#xff08;free channel&#xff09;通常指的是非限制性的包源&#xff0c;可以提供更多的包选择。有时&a…

《昇思25天学习打卡营第23天|onereal》

第23天学习内容简介&#xff1a; ----------------------------------------------------------------------------- 本案例基于MindNLP和ChatGLM-6B实现一个聊天应用。 1 环境配置 配置网络线路 2 代码开发 下载权重大约需要10分钟 ------------------------------- 运…

大模型技术对学校有什么作用?

大模型技术对学校有多方面的作用&#xff0c;可以在教学、管理、决策等多个领域带来显著的改进。以下是大模型技术对学校的主要作用&#xff1a; 1. 个性化教学&#xff1a;大模型技术可以帮助教师分析学生的学习行为和历史成绩&#xff0c;从而定制个性化的教学计划和资源。这…

告别自动激活:掌握如何在Conda中禁用Base环境

告别自动激活&#xff1a;掌握如何在Conda中禁用Base环境 引言 在Python开发的世界中&#xff0c;环境管理是一个不可或缺的部分。Conda是一个强大的包管理器和环境管理器&#xff0c;它允许开发者为不同的项目创建隔离的环境&#xff0c;从而避免依赖冲突。默认情况下&#…

maven项目容器化运行之1-基于1Panel软件将docker镜像构建能力分享给局域网

一.背景 公司主机管理组的兄弟安装了1Panel(社区版v1.10.10-lts)&#xff0c;期望我们开发的小项目都通过docker来部署。我第一步要配置的就是怎么将docker镜像构建能力共享的问题&#xff0c;因为我本机是windows&#xff0c;不想再去折腾安装docker环境。 二.设置过程 个人…

ES6 对象的新增方法(十四)

1. Object.assign(target, …sources) 特性&#xff1a;将一个或多个源对象的所有可枚举属性复制到目标对象。 用法&#xff1a;用于对象属性的合并。 const obj1 { a: 1, b: 2 }; const obj2 { b: 3, c: 4 }; Object.assign(obj1, obj2);console.log(obj1); // 输出&#…

Linux桌面环境手动编译安装librime、librime-lua以及ibus-rime,提升中文输入法体验

Linux上的输入法有很多&#xff0c;大体都使用了Fcitx或者iBus作为输入法的引擎。相当于有了一个很不错的“地基”&#xff0c;你可以在这个“地基”上盖上自己的“小别墅”。而rime输入法&#xff0c;就是一个“毛坯别墅”&#xff0c;你可以在rime的基础上&#xff0c;再装修…

网络安全-网络安全及其防护措施4

16.网络故障排除 网络故障排除的定义和作用 网络故障排除是检测、诊断和解决网络问题的过程。通过系统的方法&#xff0c;确保网络的稳定性和可用性&#xff0c;减少故障对业务的影响。有效的网络故障排除可以减少停机时间&#xff0c;提高网络的可靠性和性能&#xff0c;确保…

HCNA ICMP:因特网控制消息协议

ICMP&#xff1a;因特网控制消息协议 前言 Internet控制报文协议ICMP是网络层的一个重要协议。ICMP协议用来在网络设备间传递各种差错和控制信息&#xff0c;他对于手机各种网络信息、诊断和排除各种网络故障有至关重要的作用。使用基于ICMP的应用时&#xff0c;需要对ICMP的工…

Apollo docker-compose

来源 https://www.apolloconfig.com/#/zh/deployment/quick-start-docker 路径 /usr/apollo Sql 自己复制 Vim docker-compose.yml #如果安装过了 记得删除mysql 历史文件 rm -r /var/lib/mysql version: 2.1services:apollo-quick-start:image: nobodyiam/apollo-quick…