AI算法17-贝叶斯岭回归算法Bayesian Ridge Regression | BRR

贝叶斯岭回归算法简介

贝叶斯岭回归(Bayesian Ridge Regression)是一种回归分析方法,它结合了岭回归(Ridge Regression)的正则化特性和贝叶斯统计的推断能力。这种方法在处理具有大量特征的数据集时特别有用,因为它可以帮助减少模型的复杂性并防止过拟合。

线性回归是一种通过拟合输入特征与目标变量之间的线性关系来预测目标变量的统计方法。然而,当数据存在噪声或多重共线性时,传统的最小二乘法可能会导致过拟合问题,即模型在训练数据上表现良好,但在新数据上泛化能力差。岭回归通过在目标函数中加入正则化项(通常是L2正则化)来约束回归系数的大小,从而减轻过拟合问题。但岭回归中的正则化参数需要手动选择,这增加了模型选择的难度。

贝叶斯岭回归则通过贝叶斯方法自动估计正则化参数,并提供了对回归系数不确定性的估计,从而解决了上述问题

贝叶斯岭回归算法基本原理

  1. 岭回归的引入:在传统的线性回归模型中,如果存在多重共线性(即特征之间高度相关),模型的参数估计可能会变得不稳定。岭回归通过在损失函数中添加一个正则化项(通常是参数的平方和)来解决这个问题,这有助于收缩参数估计值,从而提高模型的稳定性。
  2. 贝叶斯框架:贝叶斯岭回归在岭回归的基础上,进一步采用贝叶斯统计的方法来估计模型参数。这意味着它使用先验分布来表达对参数的先验知识,并结合数据的似然性来更新这些知识,得到后验分布。
  3. 先验和后验:贝叶斯岭回归为每个回归系数赋予一个高斯先验,并且每个先验的方差由一个超参数控制,这个超参数本身也可以通过贝叶斯推断来估计。通过这种方式,模型可以自动调整正则化强度,而不需要手动选择。

贝叶斯岭回归算法的公式

贝叶斯岭回归(Bayesian Ridge Regression)的公式涉及多个组成部分,主要是贝叶斯统计中的先验分布、似然函数以及后验分布的推导。以下是对贝叶斯岭回归中关键公式的简要概述:

先验分布

在贝叶斯岭回归中,我们假设回归系数 w 的先验分布是一个以零为中心的高斯分布(也称为正态分布),其协方差矩阵与正则化参数 λ 有关:

其中,I 是单位矩阵,λ 是正则化参数(也称为精度参数),它控制了先验分布中 w 的分散程度。

似然函数

给定观测数据 X 和 y,我们假设观测噪声 ϵ 是高斯噪声,因此似然函数也是高斯分布:

其中,α 是噪声精度参数(与噪声方差 σ2 成反比,即 α=1/σ2),X 是设计矩阵(特征矩阵),y 是目标变量向量。

后验分布

根据贝叶斯定理,后验分布 p(wy,X,α,λ) 是先验分布和似然函数的乘积归一化后的结果。然而,直接计算后验分布可能很复杂,因此通常使用近似方法(如最大后验估计MAP)或采样方法(如马尔可夫链蒙特卡洛MCMC)。

在贝叶斯岭回归的上下文中,我们经常关注的是后验分布的均值和协方差,这些可以通过解析方式(在特定假设下)或数值方法(如变分推断)来近似。

预测分布

对于新的输入 x∗​,我们想要预测其对应的输出 y∗​。预测分布 p(y∗​x∗​,y,X,α,λ) 可以通过对 w 的后验分布进行积分来得到:

在实践中,我们通常对预测分布的均值和方差感兴趣,这些可以通过后验分布的均值和协方差来近似计算。

贝叶斯岭回归算法步骤

  1. 定义先验分布:选择合适的先验分布形式及其参数(如高斯分布的均值和协方差矩阵)。
  2. 计算似然函数:根据观测数据计算似然函数。
  3. 推导后验分布:利用贝叶斯定理和先验分布、似然函数推导出后验分布。由于后验分布可能比较复杂,通常需要使用近似方法(如最大后验估计MAP)或采样方法(如马尔可夫链蒙特卡洛MCMC)来估计其参数。
  4. 参数估计:通过优化算法(如梯度下降、共轭梯度法等)估计正则化参数 λ 和噪声精度参数 α(或等价地,噪声方差 σ2)。这些参数的选择对模型性能有重要影响。
  5. 预测:对于新的输入 x∗​,利用后验分布进行预测。预测分布 p(y∗​∣x∗​,y,X,α,λ) 可以通过对 w 的后验分布进行积分来得到。

贝叶斯岭回归算法的代码实现

import numpy as npfrom sklearn.model_selection import train_test_splitfrom sklearn.linear_model import BayesianRidgefrom sklearn.metrics import mean_squared_error# 示例数据# 假设X是特征矩阵,y是目标变量np.random.seed(0)n_samples, n_features = 100, 1X = np.random.randn(n_samples, n_features)# 创建一个简单的线性关系:y = 3 * X + 2,并添加一些噪声w = 3.0c = 2.0noise = np.random.randn(n_samples)y = w * X.ravel() + c + noise# 划分训练集和测试集X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=42)# 创建贝叶斯岭回归模型model = BayesianRidge(tol=1e-6, fit_intercept=True, compute_score=True)# 训练模型model.fit(X_train, y_train)# 预测测试集y_pred = model.predict(X_test)# 评估模型mse = mean_squared_error(y_test, y_pred)print(f"Mean Squared Error: {mse}")# 打印模型参数print(f"Estimated weight: {model.coef_[0]}")print(f"Estimated intercept: {model.intercept_}")# 如果需要,还可以查看模型对权重的估计分布(尽管BayesianRidge不直接提供分布样本)# 但你可以通过查看模型的属性(如lambda_和alpha_)来了解正则化强度print(f"Lambda (regularization strength): {model.lambda_}")print(f"Alpha (precision of the noise): {model.alpha_}")

贝叶斯岭回归算法的优缺点

优点

  1. 自动正则化:贝叶斯岭回归模型能够自动地通过先验分布和数据来确定正则化参数的大小,避免了传统岭回归中需要手动调整正则化参数的繁琐过程。这使得模型更加灵活和自适应。
  2. 处理共线性问题:当数据中存在多重共线性问题时,贝叶斯岭回归模型能够通过引入先验分布来约束回归系数的大小,从而减轻共线性对模型性能的影响。
  3. 不确定性评估:贝叶斯岭回归模型不仅提供回归系数的点估计,还可以提供这些系数的后验分布。这为模型的不确定性评估提供了可能,有助于更好地理解模型的预测结果和潜在风险。
  4. 稳健性:由于贝叶斯岭回归模型考虑了参数的先验分布和观测数据的不确定性,因此它在处理噪声数据和异常值时表现出较高的稳健性。

缺点

  1. 计算复杂度较高:相比于传统的岭回归模型,贝叶斯岭回归模型的计算复杂度较高。这主要是因为需要计算后验分布和进行参数估计的迭代过程。因此,在数据量较大或模型复杂度较高时,可能需要较长的计算时间。
  2. 先验分布的选择:贝叶斯岭回归模型的性能受到先验分布选择的影响。如果先验分布与真实情况相差较大,可能会导致模型性能下降。因此,在实际应用中需要谨慎选择先验分布。
  3. 推断过程耗时:由于贝叶斯岭回归模型需要进行复杂的后验分布计算和参数估计迭代过程,因此其推断过程相对耗时。这可能会限制模型在某些实时性要求较高的场景中的应用。

贝叶斯岭回归算法的应用场景

贝叶斯岭回归模型(Bayesian Ridge Regression Model)作为一种结合了贝叶斯统计理论和岭回归的回归分析方法,具有自动正则化、处理共线性问题、不确定性评估和稳健性等优点。这些特点使得贝叶斯岭回归模型在多个领域具有广泛的应用场景。以下是一些典型的应用场景:

  • 金融数据分析

在金融领域,贝叶斯岭回归模型可以用于股票价格预测、市场趋势分析、风险评估等。金融数据通常具有高维度、共线性和噪声多的特点,而贝叶斯岭回归模型能够自动处理这些问题,提供稳定的预测结果和风险评估。

  • 生物信息学

在生物信息学领域,贝叶斯岭回归模型可以用于基因表达数据的分析、疾病预测和药物反应预测等。生物数据往往包含大量的基因和复杂的相互作用关系,贝叶斯岭回归模型能够通过考虑参数的先验分布和观测数据的不确定性,更好地捕捉这些复杂关系。

  • 工业过程控制

在工业过程中,贝叶斯岭回归模型可以用于质量预测、故障诊断和过程优化等。工业过程通常包含多个变量和复杂的非线性关系,而贝叶斯岭回归模型能够通过正则化技术和贝叶斯推断来处理这些问题,提高预测准确性和系统稳定性。

  • 医学诊断

在医学领域,贝叶斯岭回归模型可以用于疾病诊断、预后评估和个性化医疗等。医学数据通常包含患者的多种生理指标和临床信息,而贝叶斯岭回归模型能够考虑这些信息的先验分布和不确定性,提供更为准确的诊断结果和个性化治疗方案。

  • 机器学习竞赛

在机器学习竞赛中,贝叶斯岭回归模型也是一种常用的工具。竞赛数据往往具有复杂性和多样性,而贝叶斯岭回归模型能够通过其自动正则化和不确定性评估的特点,提高模型的泛化能力和预测精度。

  • 其他应用场景

除了以上几个典型应用场景外,贝叶斯岭回归模型还可以用于社会科学研究、市场营销分析、环境保护等多个领域。这些领域的数据分析往往也面临高维度、共线性、噪声多等挑战,而贝叶斯岭回归模型能够提供有效的解决方案。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/872284.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

13、Shell自动化运维编程基础

弋.目录 RHCE板块一、为什么学习和使用Shell编程二、Shell是什么1、shell起源2、查看当前系统支持的shell3、查看当前系统默认shell4、Shell 概念 三、Shell 程序设计语言1、Shell 也是一种脚本语言2、用途 四、如何学好shell1、熟练掌握shell编程基础知识2、建议 五、Shell脚本…

英伟达股票1拆10后,现在再买入是否为时已晚?

英伟达股票1拆10后,现在再买入是否为时已晚? 英伟达的股价在过去18个月里已经上涨了近800% 人工智能领域无疑是当下最受投资者关注的焦点之一,而这一领域的佼佼者--英伟达,也被一些华尔街投资机构和看好半导体、数据中心行业的专业…

SoulApp创始人张璐团队以AI驱动社交进化,平台社交玩法大变革

在科技飞速发展的今天,人工智能正逐步渗透到社交媒体的各个环节,赋能全链路社交体验。AI的引入不仅提升了内容推荐的精准度,使用户能够更快速地发现感兴趣的内容,还能通过用户行为预测,帮助平台更好地理解和满足用户需求。此外,AI驱动的虚拟助手和聊天机器人也正在改变用户互动…

NVIDIA RTX 50系显卡接口全变,功耗爆炸超500W

七月伊始,手机圈就开始打的不可开交了。 例如真我 GT6、IQOO Neo 9S、以及蓄势待发的红米 K70 Ultra,都想在这个暑假向莘莘学子发出最诚挚的「邀请函」。 反观电脑圈这边,不能说一潭死水,只能说毫无波澜。 不过该来的还是要来的&…

Redis的使用(四)常见使用场景-缓存使用技巧

1.绪论 redis本质上就是一个缓存框架,所以我们需要研究如何使用redis来缓存数据,并且如何解决缓存中的常见问题,缓存穿透,缓存击穿,缓存雪崩,以及如何来解决缓存一致性问题。 2.缓存的优缺点 2.1 缓存的…

睿考网:造价员和造价工程师是一个意思吗?

在工程建设领域中,经常会有人问:“造价员和造价工程师是一样的吗?”这两者代表的是两种独立的职业身份,职责和资格要求有明显的差异,是两种完全不同的考试。 造价工程师是一种具有专业资质的人员,通过国家统一的执业…

『 Linux 』命名管道

文章目录 命名管道与匿名管道命名管道特点命名管道的理解命名管道实现两个毫无关联的进程间通信 命名管道与匿名管道 命名管道是管道的一种,数据流向为单向故被称为管道; 与匿名管道相同属于一种内存级文件; 区别如下: 名字 匿名管道 没有名字,只存在于内存当中(类似内核缓冲…

【软件测试】编写测试用例篇

前面部分主要是编写测试用例的方法和方向,后面一部分是编写出具体的测试用例 目录 什么是测试用例 1.设计测试用例的万能公式 1.1.从思维出发 1.2.万能公式 1.3.弱网测试 1.4.安装与卸载测试 2.设计测试用例的方法 2.1.基于需求的设计方法 2.2.等价类 2.3…

测试开发面经总结(三)

TCP三次握手 TCP 是面向连接的协议,所以使用 TCP 前必须先建立连接,而建立连接是通过三次握手来进行的。 一开始,客户端和服务端都处于 CLOSE 状态。先是服务端主动监听某个端口,处于 LISTEN 状态 客户端会随机初始化序号&…

原来,BI数据分析也是有模板的

在当今数据驱动的时代,商业智能(BI)数据分析已经成为企业决策的重要工具。然而,很多人可能并不了解,BI数据分析并非从零开始,而是可以依托现成的模板和解决方案来快速搭建和实施的。以奥威BI方案为例&#…

React+TS前台项目实战(二十九)-- 首页构建之性能优化实现首页Echarts模块数据渲染

文章目录 前言Echart模块源码功能分析数据渲染一、HashRateEchart统计图1. 功能分析2. 代码详细注释 二、BlockTimeChart统计图1. 功能分析2. 代码详细注释 三、使用方式四. 数据渲染后效果如下 总结 前言 还记得之前我们创建的 高性能可配置Echarts组件 吗?今天我…

redis 配置文件参数详解

1、redis.conf 通用类 Redis的配置文件是一个文本文件,通常名为redis.conf。以下是一些常见配置项的解释和示例: 1、bind 127.0.0.1:绑定的主机地址 2、 protected-mode ,默认是开启状态,一般不需要修改,可以保证服务…

唯众物联网综合实训台 物联网实验室建设方案

物联网综合实训装置 物联网工程应用综合实训台是我公司针对职业院校物联网行业综合技能型人才培养,综合运用传感器技术、RFID技术、接口控制技术、无线传感网技术、Android应用开发等,配合实训台上的433M无线通信设备、ZigBee节点、射频设备、控制设备、…

智能家居产品公司网站源码,自适应布局设计,带完整演示数据

适合各类智能家居电子产品使用的网站源码,深色大气设计,自适应布局设计,pc手机均可完美适配,带完整演示数据。 独家原创资源。源码是asp开发的,数据库是access,主流的虚拟主机空间都支持asp,直…

第三届经济、智慧金融与当代贸易国际学术会议(ESFCT2024)

【五大高校联合支持】第三届经济、智慧金融与当代贸易国际学术会议(ESFCT 2024) 2024 3rd International Conference on Economics, Smart Finance and Contemporary Trade 文章投稿均可免费参会 高录用快见刊【最快会后1-2个月左右见刊】【最快刊后1个月内上知网&谷歌学…

【人工智能】高级搜索技术(模拟退火搜索算法和遗传算法解决旅行商问题)

目录 一、旅行商问题 1. 需求分析 2. 数据结构、功能模块设计与说明 2.1 数据结构 (1)模拟退火搜索算法 (2)遗传算法 2.2 功能模块设计 (1)模拟退火搜索算法 (2)遗传算法 …

在 PostgreSQL 里如何处理数据的存储优化和查询复杂度的平衡?

🍅关注博主🎗️ 带你畅游技术世界,不错过每一次成长机会!📚领书:PostgreSQL 入门到精通.pdf 文章目录 在 PostgreSQL 里如何处理数据的存储优化和查询复杂度的平衡?一、理解数据存储优化和查询复…

亚马逊、ebay、沃尔玛卖家打造爆款如何利用测评提高转化率?

做亚马逊、速卖通、ebay只有打造爆款,才能够挣到钱,如果一年到头,不断测款,不断测试不同的广告打法,那么代表了什么?代表了你的试错成本相当高,一不小心,分分钟就能够把手头上仅有的…

工业智能网关的边缘计算能力赋能工业4.0

边缘计算是将数据处理和分析能力推向网络边缘的技术,使得终端设备能够实时、快速地响应环境变化,并做出相应决策。在智能制造中,通过5G工业网关的边缘计算能力,企业可以实现对生产线上大量传感器数据的实时采集、处理和分析&#…

开发实战经验分享:互联网医院系统源码与在线问诊APP搭建

作为一名软件开发者,笔者有幸参与了多个互联网医院系统的开发项目,并在此过程中积累了丰富的实战经验。本文将结合我的开发经验,分享互联网医院系统源码的设计与在线问诊APP的搭建过程。 一、需求分析 在开发任何系统之前,首先要…