【ChatGPT 消费者偏好】第二弹:ChatGPT在日常生活中的使用—推文分享—2024-07-10

今天的推文主题还是【ChatGPT & 消费者偏好】

  • 第一篇:哪些动机因素技术特征组合能够导致ChatGPT用户中高和低的持续使用意图。
  • 第二篇:用户对ChatGPT的互动性、性能期望、努力期望以及社会影响如何影响他们继续使用这些大型语言模型的意向
  • 第三篇:调查追随者如何感知使用GenAI进行社交媒体内容创造的品牌,以及这种技术的使用如何影响品牌真实性感知和消费者对品牌的态度及行为反应
  • 第四篇: 聊天机器人的广告是否应该更像人类,无论是在外观、互动性还是在广告内容的传递上
  • 第五篇:消费者在面对正面与负面服务结果时,对聊天机器人和人类客服的不同反应。


一、ChatGPT在日常生活中的使用:基于动机理论的混合方法研究

1、研究背景

本文研究背景基于生成性人工智能(GenAI)技术,如ChatGPT,对日常生活各领域活动的影响。随着GenAI技术在私人和工作场景中的使用增加,研究者试图理解是什么因素激励个人用户持续使用这类技术

2、研究问题

哪些动机因素技术特征组合能够导致ChatGPT用户中高和低的持续使用意图。

3、研究思路

研究采用了混合方法设计,结合定量调查研究和定性访谈研究的发现。使用模糊集定性比较分析(fsQCA)来分析多波次数据,并用半结构化访谈来补充和丰富定量研究的配置。

4、理论基础

本文基于动机理论,区分了内在动机和外在动机因素。

  • 内在动机因素包括通过活动本身获得的满足感;
  • 外在动机因素通常与用户感知的有用性相关。
  • 研究将动机理论应用于模型中,考虑了三种内在动机因素(InMaccomplish、InMknow、InMstimulation)和一种外在动机因素(ExMPU),以及两个技术特征(TeCPEOU和TeCNVL)。

5、理论模型

模型提出了内在动机因素、外在动机因素和技术特征如何共同影响ChatGPT的持续使用意图。

6、研究假设

研究假设了四种动机因素和两个技术特征的组合将导致个体ChatGPT用户的持续使用意图。特别是,研究假设了易用性和新颖性对于高持续使用意图是必要条件

7、研究对象与数据收集

研究对象为279名ChatGPT用户,数据通过在线调查收集。此外,还包括15名参与者的半结构化访谈,以深入理解使用情境和动机。

8、实证过程

定量研究通过三波在线调查收集数据,并使用fsQCA进行分析。定性研究则通过访谈收集数据,并进行内容分析以识别使用案例和动机因素。

9、研究结论

研究发现高感知易用性和高感知新颖性是高持续使用意图的必要条件。研究识别了五种导致高持续使用意图的配置,并指出感知易用性是跨多个配置中的关键因素。同时,研究通过访谈揭示了使用ChatGPT的个体使用案例以及促进和阻碍持续使用的因素。

10、局限性

  • 研究的局限性在于,虽然研究了ChatGPT用户的持续使用意图,但这种意图不一定转化为实际的使用行为
  • 此外,研究主要关注了高持续使用意图的因素,对于导致低持续使用意图的因素研究较少。
  • 研究结果可能受到ChatGPT新颖性的影响,随着用户对技术的熟悉,感知新颖性的影响可能会减弱。
  • 最后,研究的样本可能限制了研究结果的普遍适用性。

二、影响绩效期望和使用ChatGPT意愿的因素:使用SmartPLS软件推进信息技术接受框架

1、研究背景

本文探讨了人工智能(AI)驱动的大型语言模型(LLMs),特别是ChatGPT的使用情况。尽管ChatGPT等AI聊天机器人在多个领域中越来越流行,但关于它们的使用、感知和意向行为的研究相对较少。

2、研究问题

文章提出了三个研究问题:

  • RQ1.信息质量和源可信度如何影响在线用户对ChatGPT的性能期望?
  • RQ2.用户对ChatGPT的互动性、性能期望、努力期望以及社会影响如何影响他们继续使用这些大型语言模型的意向
  • RQ3.性能期望构念在多大程度上中介了努力期望与使用这些交互式AI技术之间的意向?

3、研究思路

研究采用了调查问卷的方式收集定量数据,并运用部分最小二乘法(PLS)路径模型来评估构建的可靠性和效度,并确定研究模型中因果路径的相对强度和显著性。

4、理论基础

文章整合了信息技术接受模型(IAM)中的信息质量和源可信度度量,以及统一理论接受和使用技术(UTAUT1/UTAUT2)中的性能期望、努力期望和社会影响构念,并加入了感知互动性构念,来确定影响个体使用AI文本生成系统意向的因素。

5、理论模型

模型中提出的变量包括性能期望、努力期望、社会影响、感知互动性、信息质量和源可信度。这些变量通过理论基础与个体使用ChatGPT的意向相联系。

6、研究假设

  • H1.用户对ChatGPT的性能期望显著影响其使用该信息技术的意向。
  • H2.用户对ChatGPT的努力期望显著影响其使用该信息技术的意向,并且性能期望部分中介了这一关系。
  • H3.用户对ChatGPT的努力期望显著影响该信息技术的性能期望。
  • H4.用户对ChatGPT生成响应的信息质量显著影响其对该信息技术的性能期望。
  • H5.用户对ChatGPT生成响应的源可信度显著影响其对该信息技术的性能期望。
  • H6.社会影响显著影响在线用户使用ChatGPT的意向。
  • H7.用户对ChatGPT的感知互动性显著影响其使用该信息技术的意向。

7、研究方法

研究采用了在线调查问卷的方式收集数据,使用SmartPLS软件进行PLS路径模型分析。

8、研究对象与数据收集

研究对象为南欧某大学全职和兼职课程的学生和教职工。通过电子邮件分发了超过13200份问卷,并最终获得了654份有效样本。(回收率太低了吧)

9、实证过程

研究进行了描述性统计分析,并通过PLS-SEM算法和Bootstrapping程序进行了假设检验。

10、研究结论

研究结果表明,源可信度对性能期望的影响最为显著,感知互动性对使用意向的影响也很显著。此外,性能期望在努力期望和使用意向之间起到了部分中介作用。研究还发现,信息质量和社会影响对使用意向有一定的影响。

11、局限性

研究为横断面调查,可能存在共同方法偏差(CMV)。此外,研究主要集中于ChatGPT,可能限制了研究结果的普遍适用性。未来的研究可以在不同的设置中复制本研究,并考虑使用不同的数据收集方法和样本。


三、你自己创造你的内容吗?使用生成式人工智能进行社交媒体内容创作会减弱感知的品牌真实性

1、研究背景

随着生成性人工智能(GenAI)在营销内容创造中的潜力被逐渐认识,其对消费者行为的影响尚未得到实证检验。社交媒体平台要求披露GenAI内容,这促使研究者探讨使用GenAI进行内容创造的品牌在追随者心中的形象

2、研究问题

本文旨在调查追随者如何感知使用GenAI进行社交媒体内容创造的品牌,以及这种技术的使用如何影响品牌真实性感知和消费者对品牌的态度及行为反应

3、研究思路

研究通过三个实验性研究来探讨不同类型的社交媒体品牌(包括企业品牌和影响者)的追随者对GenAI采用的反应。研究考虑了GenAI在内容创造中的不同角色:完全不采用、辅助人类创作、或完全自动化创作。

4、理论基础

研究基于算法厌恶理论品牌真实性理论

  • 算法厌恶理论解释了人们为何不信任并拒绝算法做出的决策
  • 品牌真实性理论强调品牌被感知为真实可靠时,能够建立强大的身份和与追随者的关系。

5、理论模型

研究构建了一个概念模型,提出GenAI采用的程度(不采用、辅助、自动化)会影响追随者对品牌真实性的感知,进而影响他们对帖子的可信度、品牌态度、电子口碑传播意图和品牌忠诚度。

6、研究假设

  • H1a/b/c:GenAI采用对品牌态度和行为反应的负面影响,通过品牌真实性感知来中介。
  • H2a/b/c:品牌真实性感知在GenAI采用对社交媒体帖子可信度、品牌态度、电子口碑传播意图和品牌忠诚度的影响中起中介作用。

7、研究方法

采用在线实验方法,通过Qualtrics平台进行。研究1和研究3基于场景模拟,研究2使用虚构品牌的GenAI创造的视觉内容。

8、研究对象与数据收集

研究对象为活跃的社交媒体用户,使用Prolific平台进行招募。数据收集通过在线问卷进行,确保样本具有代表性和数据质量。

9、实验过程

实验分为不同组别,分别对应GenAI的不同采用情况。参与者被要求想象他们最喜欢的品牌或影响者采用GenAI的情况,并对其反应进行评估。

10、研究结论

研究发现,GenAI的使用会降低品牌真实性感知,进而负面影响消费者对品牌的态度和行为反应。然而,当GenAI被用来辅助而非完全替代人类创作时,这种负面影响会有所减轻。此外,披露GenAI的使用情况对消费者反应有重要影响。

11、局限性

研究使用实验方法,可能缺乏现实世界GenAI采用的外部有效性。样本规模相对较小,可能限制了检测较小调节效应的能力。研究在GenAI技术初期进行,随着技术的普及和消费者对GenAI的熟悉度提高,消费者的反应可能会发生变化。


四、具有人情味的聊天机器人广告:拟人化、互动性、叙事性的考验

1、研究背景

  • 人工智能(AI)驱动的聊天机器人(chatbots)正在改变数字广告领域,通过提供更自然、更少侵入性的消费者通信方式。
  • 聊天机器人能够模拟人类语言,但它们通常因为非人类特性而带有某种污名,被视为机械的、缺乏细微对话能力
  • 尽管一些研究显示,使用类似人类的语言风格和人类名称的聊天机器人可以带来更大的满意度和积极态度,但其他研究表明,聊天机器人的类似人类特性可能导致负面用户体验

2、研究问题

聊天机器人的广告是否应该更像人类,无论是在外观、互动性还是在广告内容的传递上

3、研究思路

  • 通过实验研究聊天机器人的拟人化特征、信息互动性和广告叙事性三个独立变量,探讨它们如何影响消费者对广告的态度和行为意图。

4、理论基础

  • 文章基于HAII-TIME模型,该模型从互动媒体效应理论(TIME)的视角研究人-人工智能交互(HAII)的心理方面。
  • 模型提出两种理论途径:线索途径和行动途径,分别强调AI技术的符号方面和用户与AI系统的互动能力。

5、理论模型

模型中提出的变量包括聊天机器人的拟人化特征、信息互动性、广告叙事性,以及它们如何影响消费者体验。

  • 拟人化特征作为感知线索
  • 信息互动性作为行动线索
  • 叙事性广告作为人类活动的体现

共同作用于提升聊天机器人广告的人类感知度。

6、研究方法

  • 采用2×2×2被试间在线实验设计,测试提出的假设和研究问题。

7、研究对象与数据收集

  • 通过CloudResearch平台招募420名参与者,最终有效样本为414名美国居民。

8、实验过程

  • 参与者被随机分配到八种实验条件之一,与模拟真实生活烹饪聊天机器人进行互动,并在互动后完成问卷。

9、研究结论

  • 高信息互动性通过减少期望违背促进了对广告和广告产品的积极态度和行为意图。
  • 叙事性广告通过促进叙事传输达到同样积极的结果。
  • 三者之间的交互作用表明,对于机器样貌的聊天机器人,高互动性和叙事性广告的结合可以通过增强社会存在感来提高广告说服力。

10、局限性

研究未显示拟人化特征对感知社会存在感的主效应,可能是因为视觉线索的操纵不足。
- 研究使用了两个真实世界的广告视频来操纵广告类型,可能存在其他特征的干扰。
- 研究样本可能对新技术更为熟悉,可能影响外部有效性。
- 研究可能存在自我选择偏差,因为参与者是出于经济激励而参与的。


五、消费者对聊天机器人和人类服务的反应

1、研究背景

  • 随着聊天机器人(chatbots)在客户服务中的普及,公司开始探索使用聊天机器人完全自动化提供客户服务的可能性。尽管聊天机器人在成本效率、可用性、可扩展性、一致性等方面具有优势,但消费者对基于聊天机器人的客户服务接受度不一。

2、研究问题

本文研究消费者在面对正面与负面服务结果时,对聊天机器人和人类客服的不同反应。同时探讨感知到的共情作为潜在中介因素在这种关系中的作用。

3、研究思路

  • 通过四个不同的研究,在三种不同的服务背景中,使用情景法准实验方法来探索消费者对聊天机器人和人类客服的反应。

4、理论基础

  • 文章结合了消费者偏好理论、服务结果情感价值、情绪与共情、消费者归因理论等理论基础。特别是归因理论,解释了消费者如何基于环境信息寻找行为和事件的原因或解释。

5、理论模型

  • 研究模型中包括服务提供者类型(人类或聊天机器人)、服务结果情感价值、感知到的共情等变量。这些变量通过归因理论框架相互联系,形成消费者对服务体验的评价。

6、研究方法

  • 使用情景法和准实验法,通过在线招募的参与者进行实验。情景法通过叙述来操纵变量,而准实验法通过与ChatGPT的实时交互来验证假设。

7、研究对象与数据收集

  • 研究对象为通过AmazonMTurk和Prolific平台招募的参与者。数据收集包括参与者对服务遭遇的反应、感知到的共情、再次购买意图等。

8、研究结论

  • 研究发现,在正面和负面服务结果条件下,消费者对聊天机器人的服务反应普遍不如人类客服
  • 这种效应完全由服务提供者的感知共情所中介
  • 通过更富有共情的沟通提高聊天机器人的感知共情可以改善消费者对聊天机器人服务的评价,并与人类客服的评价相当。

9、局限性

研究集中在非例行服务互动中,可能不适用于例行服务情况。此外,实验设置没有考虑服务等待时间、服务延迟或选择服务提供者类型等因素,这些都可能影响消费者的反应。未来的研究可以探索这些因素以及聊天机器人在不同服务情境下的表现。


希望大家都可以在自己的领域twinkling~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/870304.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

强烈推荐!!李沐老师《动手学深度学习》最新Pytorch版!

动手学深度学习(PyTorch版)》是由李沐、Aston Zhang和孔德威共同编写的教材,专为深度学习初学者和实践者设计。本书使用PyTorch作为主要的深度学习框架,全面系统地介绍了深度学习的基本理论、常见模型和实际应用技巧。 书中内容包括深度学习的基础知识、…

【北京迅为】《i.MX8MM嵌入式Linux开发指南》-第一篇 嵌入式Linux入门篇-第二十二章 安装VMware Tool 工具

i.MX8MM处理器采用了先进的14LPCFinFET工艺,提供更快的速度和更高的电源效率;四核Cortex-A53,单核Cortex-M4,多达五个内核 ,主频高达1.8GHz,2G DDR4内存、8G EMMC存储。千兆工业级以太网、MIPI-DSI、USB HOST、WIFI/BT…

【Linux】常用命令总结(updating)

1.date2.du(disk use)3.df(disk free)4.find shell命令可以使用man查看命令文档说明,说明界面中可通过b(backward)向上翻页,f(forward)向下翻页,g(go to)跳到说明首页,G跳到说明尾页…

el-upload 上传多个图片或多个文件,编辑,回显,删除操作

后端查询详情接口数据: [{"id": 91,"name": "Default","sort": 0,"fold": false,"deletable": false,"uniqueId": "machine_cabinet","infoList": [{"id": …

点晴模切ERP系统持续引领模切企业管理

数字化转型是制造企业迈向高质量发展的关键步骤,而升级优化企业管理平台,将企业数据信息有效利用、功能模块优化调整、流程架构科学规划,则是数字化转型的核心要素。 当今时代的模切ERP领域竞争者众多,为什么点晴模切ERP能从中脱颖而出?为什么那么多模切…

盘一盘3DGS对哪些行业影响最大?

在日新月异的科技时代,每一个新兴技术的诞生都像是宇宙中的新星,以其独特的光芒照亮并改变着世界。3DGS正是这样一项技术,它的出现无疑对传统3D视觉产生了巨大的冲击,也给各行各业带来了巨大的影响。作为CV界的新晋黑马&#xff0…

Deepspeed : AttributeError: ‘DummyOptim‘ object has no attribute ‘step‘

题意:尝试在一个名为 DummyOptim 的对象上调用 .step() 方法,但是这个对象并没有定义这个方法 问题背景: I want to use deepspeed for training LLMs along with Huggingface Trainer. But when I use deepspeed along with trainer I get …

红酒的甜蜜秘密:如何搭配甜点?

在品味美食的旅程中,甜点与红酒的搭配总是能带来意想不到的惊喜。红酒的醇厚与甜点的细腻,在口中交织出美妙的旋律,让人陶醉不已。今天,就让我们一起探索红酒的甜蜜秘密,看看如何与甜点很好搭配,享受这一场…

DLP迎来新机遇 | 天空卫士数据防泄漏防护市场占有率连续三年第一

IDC 于近日发布了《中国数据泄露防护市场份额,2023:DLP迎来新机遇》(Doc#CHC50973524 ,2024年6月)报告,天空卫士DLP产品以21.9%的市场份额再次位列中国数据防泄露防护市场第一。这一成绩体现了天空卫士在技…

软件供应链安全:如何防范潜在的攻击?

来源:https://thehackernews.com/2024/06/practical-guidance-for-securing-your.html 软件生产组织面临越来越大的监管和法律压力,要求其保护供应链并确保软件的完整性,这不足为奇。在过去几年里,软件供应链已经成为攻击者越来越…

odoo 自定义菜单模型等进行报表输出

由于个性化需求,要定义不同报表不同条件搜索, 所以自定义有如下: 模型字段权限菜单功能如下: 启用:创建新菜单、form视图、action动作 前提:模型已经创建好, 禁用:对菜单进行归档处理 删除数据:如若正在使用,请先禁用报表 另附资料 全部代码如下: class IframeMana…

【C++】类中的六个默认成员函数(构造函数、析构函数、拷贝构造函数、复制重载函数等)

类中的六个默认成员函数 默认成员函数为了解决C语言存在的一些问题而诞生,默认存在于类中,进行某种操作时会自动调用默认成员函数,如想在此种操作中自动实现某种操作,可以手动定义此默认成员函数,如果手动定义则取代默…

kafka与zookeeper的SSL认证教程

作者 乐维社区(forum.lwops.cn)许远 在构建现代的分布式系统时,确保数据传输的安全性至关重要。Apache Kafka 和 Zookeeper 作为流行的分布式消息队列和协调服务,提供了SSL(Secure Sockets Layer)认证机制&…

汇凯金业:如何判断黄金的买入时机

黄金,作为全球公认的避险资产,其价格波动受到多种因素的影响,包括经济数据、货币政策、地缘政治风险等。对于投资者而言,把握黄金的最佳买入点是实现投资收益最大化的关键。本文将探讨影响黄金价格的主要因素,并提供一…

八大排序之——计数排序全方位剖析!(小白也能轻松看懂!)

目录 1. 计数排序的思想动图 2. 从思想到代码的实现 >1.创建临时数组 >2.统计次数 >3.排序 >4.简单版本 3. 是否可以优化呢~ 4. 计数排序的时空复杂度 5.总结 计数排序的优点 计数排序的局限性 6、完结散花 个人主页:秋风起,再归来…

【腾讯云业务运营暑期实习面试题】

题目: (全程大概50来分钟左右,面试官挺好的,不清楚的问题也在一直引导我,总体来说非常好,挺喜欢这个面试官的) 1、自我介绍 2、讲讲文件的权限以及把目录下所有文件都修改 文件的权限 rwx --&…

动态规划(DFS -> 记忆化搜索 ->动态规划)

问题一: 首先看一个最经典的问题:上台阶问题。P1255 数楼梯 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 我们首先看一下,如何用DFS的方法进行解题。 假设我们要上到第5级台阶: 可以看出上到第五级台阶时,可能是…

oak相机使用oak官网方式标定

目录 一、depthai ROS驱动 一、depthai ROS驱动 (1)驱动下载地址:2. C 开发快速上手 — DepthAI Docs 0.3.0.0 documentation sudo apt install ./depthai_2.17.1_arm64.deb //运行 Python3 utilities/cam_test.py -mres 400 -cams rgb,m …

探索大模型:袋鼠云在 Text To SQL 上的实践与优化

Text To SQL 指的是将自然语言转化为能够在关系型数据库中执行的结构化查询语言(简称 SQL)。近年来,伴随人工智能大模型技术的不断进步,Text To SQL 任务的成功率显著提升,这得益于大模型的推理、理解以及指令遵循等能…

自闭症学校排名前十:为星儿点亮未来

在自闭症教育领域,有许多优秀的学校和机构为自闭症儿童提供着专业的帮助和支持。 星贝育园:以其独特的教育理念和个性化的教学方法脱颖而出。学校拥有一支经验丰富、富有爱心的教师团队,为孩子们提供全方位的关爱和教育。注重培养孩子的综合能…