使用 Hugging Face 的 Transformers 库加载预训练模型遇到的问题

题意:

Size mismatch for embed_out.weight: copying a param with shape torch.Size([0]) from checkpoint - Huggingface PyTorch

这个错误信息 "Size mismatch for embed_out.weight: copying a param with shape torch.Size([0]) from checkpoint - Huggingface PyTorch" 通常出现在使用 Hugging Face 的 Transformers 库加载预训练模型时,模型的某些参数与预训练模型检查点(checkpoint)中的参数形状不匹配。

问题背景:

I want to finetune an LLM. I am able to successfully finetune LLM. But when reload the model after save, gets error. Below is the code

import argparse
import numpy as np
import torch
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLMfrom trl import DPOTrainer, DPOConfig
def preprocess_data(item):return {'prompt': 'Instruct: ' + item['prompt'] + '\n','chosen': 'Output: ' + item['chosen'],'rejected': 'Output: ' + item['rejected']}        def main():parser = argparse.ArgumentParser()parser.add_argument("--epochs", type=int, default=1)parser.add_argument("--beta", type=float, default=0.1)parser.add_argument("--batch_size", type=int, default=4)parser.add_argument("--lr", type=float, default=1e-6)parser.add_argument("--seed", type=int, default=2003)parser.add_argument("--model_name", type=str, default="EleutherAI/pythia-14m")parser.add_argument("--dataset_name", type=str, default="jondurbin/truthy-dpo-v0.1")parser.add_argument("--local_rank", type=int, default=0)args = parser.parse_args()# Determine device based on local_rankdevice = torch.device("cuda", args.local_rank) if torch.cuda.is_available() else torch.device("cpu")tokenizer = AutoTokenizer.from_pretrained(args.model_name)tokenizer.pad_token = tokenizer.eos_tokenmodel = AutoModelForCausalLM.from_pretrained(args.model_name).to(device)ref_model = AutoModelForCausalLM.from_pretrained(args.model_name).to(device)dataset = load_dataset(args.dataset_name, split="train")dataset = dataset.map(preprocess_data)# Split the dataset into training and validation setsdataset = dataset.train_test_split(test_size=0.1, seed=args.seed)train_dataset = dataset['train']val_dataset = dataset['test']training_args = DPOConfig(learning_rate=args.lr,num_train_epochs=args.epochs,per_device_train_batch_size=args.batch_size,logging_steps=10,remove_unused_columns=False,max_length=1024,max_prompt_length=512,fp16=True        )# Verify and print embedding dimensions before finetuningprint("Base model embedding dimension:", model.config.hidden_size)model.train()ref_model.eval()dpo_trainer = DPOTrainer(model,ref_model,beta=args.beta,train_dataset=train_dataset,eval_dataset=val_dataset,tokenizer=tokenizer,args=training_args,)dpo_trainer.train()# Evaluateevaluation_results = dpo_trainer.evaluate()print("Evaluation Results:", evaluation_results)save_model_name = 'finetuned_model'model.save_pretrained(save_model_name)if __name__ == "__main__":main()

Error I was getting as below

return model_class.from_pretrained(File "/.local/lib/python3.10/site-packages/transformers/modeling_utils.py", line 3838, in from_pretrained) = cls._load_pretrained_model(File "/.local/lib/python3.10/site-packages/transformers/modeling_utils.py", line 4349, in _load_pretrained_modelraise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")RuntimeError: Error(s) in loading state_dict for GPTNeoXForCausalLM:size mismatch for gpt_neox.embed_in.weight: copying a param with shape torch.Size([0]) from checkpoint, the shape in current model is torch.Size([50304, 128]).size mismatch for embed_out.weight: copying a param with shape torch.Size([0]) from checkpoint, the shape in current model is torch.Size([50304, 128]).You may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method.

After finetuning, model works perfectly. But after reloading the saved trained model its not working. Any idea why gets this error when reloading the model ?

问题解决:

Instead of

model.save_pretrained(save_model_name)

try this

dpo_trainer.save_model(save_model_name)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/869411.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Elasticsearch基础(四):Elasticsearch语法与案例介绍

文章目录 Elasticsearch语法与案例介绍 一、Restful API 二、查询语法 1、ES分词器 2、ES查询 2.1、match 2.2、match_phrase 2.3、multi_match 2.4、term 2.5、terms 2.6、fuzzy 2.7、range 2.8、bool Elasticsearch语法与案例介绍 一、Restful API Elastics…

服务攻防——中间件Jboss

文章目录 一、Jboss简介二、Jboss渗透2.1 JBoss 5.x/6.x 反序列化漏洞(CVE-2017-12149)2.2 JBoss JMXInvokerServlet 反序列化漏洞(CVE-2015-7501)2.3 JBossMQ JMS 反序列化漏洞(CVE-2017-7504)2.4 Adminis…

Java如何自定义注解及在SpringBoot中的应用

注解 注解(Annotation),也叫元数据。一种代码级别的说明。它是JDK1.5及以后版本引入的一个特性,与类、接口、枚举是在同一个层次。它可以声明在包、类、字段、方法、局部变量、方法参数等的前面,用来对这些元素进行说…

leetcode:LCR 018. 验证回文串(python3解法)

难度:简单 给定一个字符串 s ,验证 s 是否是 回文串 ,只考虑字母和数字字符,可以忽略字母的大小写。 本题中,将空字符串定义为有效的 回文串 。 示例 1: 输入: s "A man, a plan, a canal: Panama" 输出: t…

【C++】开源:坐标转换和大地测量GeographicLib库配置使用

😏★,:.☆( ̄▽ ̄)/$:.★ 😏 这篇文章主要介绍坐标转换和大地测量GeographicLib库配置使用。 无专精则不能成,无涉猎则不能通。——梁启超 欢迎来到我的博客,一起学习,共同进步。 喜欢的朋友可以关…

Effective C++笔记之二十一:One Definition Rule(ODR)

ODR细节有点复杂,跨越各种情况。基本内容如下: ●普通(非模板)的noninline函数和成员函数、noninline全局变量、静态数据成员在整个程序中都应当只定义一次。 ●class类型(包括structs和unions)、模板&…

2018-2022 年份微博签到数据集

前阵子接到一个实验室老师的需求,采集五年前(2024-52019)过年前后的北京微博签到数据。 前两年采集的深圳签到数据是 2022 年是当年的尚可,这次虽然时间跨度只有两个月,但是由于时间太过久远,但是颇费了一…

Spring学习04-[Spring容器核心技术AOP学习]

AOP学习 AOP介绍使用对业务方法添加计算时间的增强 EnableAspectJAutoProxyAOP的术语通知前置通知Before后置通知After返回通知AfterReturning异常通知AfterThrowing总结-通知执行顺序 切点表达式的提取-使用Pointcut进行抽取切点表达式的详细用法execution和annotation组合 Sp…

STM32快速搭建项目框架

注:编写本博客的原因,学习期间基于复习之前知识点的需要,故撰写本教程,即是复习前面的知识点也是作为博客的补充 1.0 文件夹的创建 创建一个STM32项目为模版工程,问价夹下分别包含4个子文件夹,一个是Librar…

嘉立创EDA学习笔记

嘉立创EDA学习笔记 PCB引线一、设计规则间距安全间距其他间距 物理导线网络长度差分对过孔尺寸 平面铺铜 PCB布线 作为一个嵌入式开发潜力工程师,咱们必须得学会如何绘制开发板以满足顾客各种功能的需求,因此小编去学习了一下嘉立创,写这篇文…

VSCode用ssh连接ubuntu虚拟机实现远程访问文件夹

1. ubuntu安装ssh服务 1.1 安装 sudo apt-get install ssh sudo apt-get install openssh-server1.2 启动ssh服务 sudo service ssh start sudo service ssh status # 查看状态 ## 或者用下面方式重启ssh服务 ## /etc/init.d/ssh restart1.3 ssh服务加入开机启动 sudo syst…

HTML语言常见标签

语法 HEAD部分的HTML标签 1 标题标签 <title>标题内容</title> 2 段落标签 <meta charset"utf-8"/> BODY部分的HTML标签 1标题标签&#xff08;独占一行&#xff09;<h1>标题内容</h1> 2段落标签&#xff08;独占一行&#xff09;…

TK 检查输入框是否为空

在Python的Tkinter库中&#xff0c;你可以使用事件绑定或者在按钮点击事件中检查输入框的值是否为空来实现这个功能。以下是一个简单的例子&#xff1a; import tkinter as tk from tkinter import messageboxdef check_input():entry input_box.get()if not entry:messagebo…

TLP152 光耦合器:工程师的可靠选择

东芝的 TLP152 光耦合器是一款稳健且多功能的组件&#xff0c;能够满足各种高速和高可靠性应用中的工程师需求。本文将深入探讨 TLP152 的技术特性、优点和应用&#xff0c;突出其在市场中的独特性。 主要特点和规格 TLP152 光耦合器集成了一颗铝镓砷&#xff08;GaAlAs&…

昇思14天

ResNet50图像分类 1. ResNet50图像分类概述 ResNet50是一种用于图像分类的深度卷积神经网络。图像分类是计算机视觉的基本应用&#xff0c;属于有监督学习范畴。ResNet50通过引入残差结构&#xff0c;解决了深层网络中的退化问题&#xff0c;使得可以训练非常深的网络。 2. …

了解Adam和RMSprop优化算法

优化算法是机器学习和深度学习模型训练中至关重要的部分。本文将详细介绍Adam&#xff08;Adaptive Moment Estimation&#xff09;和RMSprop&#xff08;Root Mean Square Propagation&#xff09;这两种常用的优化算法&#xff0c;包括它们的原理、公式和具体代码示例。 RMS…

配置路由器支持Telnet操作 计网实验

实验要求&#xff1a; 假设某学校的网络管理员第一次在设备机房对路由器进行了初次配置后&#xff0c;他希望以后在办公室或出差时也可以对设备进行远程管理&#xff0c;现要在路由器上做适当配置&#xff0c;使他可以实现这一愿望。 本实验以一台R2624路由器为例&#xff0c;…

OpenCV MEI相机模型(全向模型)

文章目录 一、简介二、实现代码三、实现效果参考文献一、简介 对于针孔相机模型,由于硬件上的限制(如进光量等),他的视野夹角往往有效区域只有140度左右,因此就有研究人员为每个针孔相机前面再添加一个镜片,如下所示: 通过折射的方式增加了相机成像的视野,虽然仍然达不…

东方通Tongweb发布vue前端

一、前端包中添加文件 1、解压vue打包文件 以dist.zip为例&#xff0c;解压之后得到dist文件夹&#xff0c;进入dist文件夹&#xff0c;新建WEB-INF文件夹&#xff0c;进入WEB-INF文件夹&#xff0c;新建web.xml文件&#xff0c; 打开web.xml文件&#xff0c;输入以下内容 …

理解局域网技术:从基础到进阶

局域网&#xff08;LAN&#xff09;是在20世纪70年代末发展起来的&#xff0c;起初主要用于连接单位内部的计算机&#xff0c;使它们能够方便地共享各种硬件、软件和数据资源。局域网的主要特点是网络为一个单位所拥有&#xff0c;地理范围和站点数目均有限。 局域网技术在计算…