贝叶斯估计(1):期末大乱炖

写在前面!

 

1 先验分布和后验分布

三种信息:总体信息、样本信息、先验信息

总体信息:“总体是正态分布”;样本信息:总体抽取的样本提供的信息,是最新鲜的信息;先验信息:在抽样之前就知道的关于统计问题的一些信息【来源于历史资料等】

贝叶斯公式

离散形式:

几个公式:

先验分布:

样本信息的综合:

三个信息的综合:

\theta进行估计:

求后验分布!!!
【1】连续时(先验分布)

(1)写出先验分布,如果不知道按照均匀分布处理

(2)计算样本X 和参数\theta的联合分布

样本似然函数 乘以 先验信息密度函数

(3)计算X的边际密度【m(x)】

(4)利用贝叶斯公式得到\theta的后验分布

所以\theta的范围在这里就是 大于样本数的的最大值-0.5 小于最小值+0.5

这样就定下了\theta的取值范围咯!!!!

具体视频启发见:已知观测值求后验分布-哔哩哔哩_bilibili

【2】离散

共轭先验分布

【1】正态分布[指的是样本]的共轭先验分布[先验和后验都是]是正态分布(之间的关系)

【2】二项分布中的成功概率\theta的共轭先验分布式贝塔分布

【3】泊松分布的均值\lambda的共轭先验分布是伽马分布

二项分布的进化,X是发生的次数,那么当抽取样本时,n\bar{x}就是总次数!!!!【可见例题5.3.1】

贝塔分布

伽马分布

特例:

先验分布超参数的确定

【1】利用先验矩

【2】利用先验分位数

【3】利用先验矩和先验分位数

充分统计量【更方便的计算出后验分布!】

作用:

应用:

p(x|\theta)是没有办法计算出来的因为,不知道具体取值的情况,但是p(\bar{x}|\theta)是知道的

2 贝叶斯推断

存在意义:

2.1 条件方法

2.2 估计

2.2.1 贝叶斯估计

例题1

例题2

例题3

贝叶斯假设 是假设\theta是均匀分布,当都为1 的时候贝塔分布退化成均匀分布

例题4

最大的取值不能超过观察值哦!!!

2.2.2 贝叶斯误差估计

后验均方误差的均值!

例题1  !!!!(先验分布是离散的)

后验密度达到最大的时候所对应的\theta 是最大后验估计

后验分布期望值是后验分布均值

例题2 (先验分布是连续的贝塔分布)

众数算出来的值其实就是贝塔分布函数达到最大时自变量的取值!!!!

2.3 区间估计

不用寻找枢轴量直接用后验分布就可以!!

例题1

110.38-1.96*8.32 = 94.07

110.38+1.96*8.32 = 126.69

2.4 假设检验

2.4.1 假设检验

接受最大后验概率的假设!!!!

例题1

计算出后验分布!!

均匀

2.4.2 贝叶斯因子

后验概率比较的方法!

后验机会比、前验机会比!可见2.4.4 例题2

贝叶斯因子表示数据X支持原假设的程度!

2.4.3 简单对简单【先计算贝叶斯因子】

例题1

2.4.4 复杂对复杂【计算后验概率比】

例题2

不用计算器的话:就是先标准化然后查表!

贝叶斯因子小这就不可以!

2.4.5 简单对复杂【先计算贝叶斯因子】

例题3

2.4.6 多重假设检验

例题4 

谁大接受谁!

2.5 预测

例题5

2.6 似然原理

3 先验分布的确定

3.1 主观概率

3.2 利用先验信息

3.2.1 直方图法(微重要)

例题1

3.2.2 选定先验密度函数形式再估计其超参数

通过矩估计的方法!

例题1延续

例题2

3.2.3 定分位度法和变分位度法【了解即可】

3.3 利用边缘分布确定先验分布

3.3.1 可直接求出边缘分布

例题1

让m(x)达到最大时 ,求出两个超参数的值

3.3.2 混合分布下求出边缘分布类似加权求和

例题2

3.3.3 先验选择的ML-LL方法

例题3 延续3.3.1的例题1

样本是从边缘分布里抽出来的当然可以用于边缘分布超参数的估计!!!!!

3.3.4 先验选择的矩方法

可通过公式进行简化计算!

\mu _m(\lambda ) = E^{\theta |\lambda }[\mu (\theta ))]

目标是求出\lambda

例题4

到此为止吧,我看不懂.....服了

3.4 无信息先验分布

4 决策中的收益、损失与效用

4.1 决策问题的三要素

4.2 决策准则

4.2.1 行动的容许性

例题1

4.2.2 决策准则【只使用先验信息】

【1】乐观准则(大中选大)

【2】悲观准则(小中选大)

【3】折中准则(加权)

例题

4.3 先验期望准则

使先验平均收益达到最大的行动a

例题

例题

这个只计算均值时发现有两个最优行动,因此再计算方差 选择方差小的!!!

P134【课本】

4.3.2 两个性质

都加不变,同一个状态的一行加一样的数不变!

4.4 损失函数

损失函数:“没有转到该赚到的钱!”

4.4.1 从收益到损失

例题【由收益矩阵得到损失矩阵】

损失为,当前位 与赚最多钱时的差距!(状态是一定的!!!)

也是一个状态一算!

例题(已知收益函数的表达式求损失函数!)

\theta进行积分得到关于a的表达式,然后求出这个表达式的最小值!!!

4.4.2 损失函数下的悲观准则

例题(收益和损失悲观)

注意悲观准则在 收益函数中时(小中选大);在 损失函数中时(大中选小)

用损失函数进行决策合理一点!

例题

4.4.3 损失函数下的先期望准则

例题

课本【P141】

例题p142

4.5 常用损失函数

4.5.1 常用损失函数

【1】平均损失函数

【2】线性损失函数

【3】0-1损失函数

【4】多元二次损失函数

【5】二行动线性决策问题的损失函数

例题【后序步骤和5.1 中的例题是一样的!】

先求平衡值就是相等的时候\theta的取值!

5 贝叶斯决策

5.1 贝叶斯决策问题定义

先验信息和样本信息 都使用的决策问题!

按照后验平均损失最小 得到贝叶斯决策

优缺点

例题5.1.1P163!!!

让先验期望损失最小是第四章,把\theta弄没,离散的时候是相乘

贝叶斯要在这个机会基础上基础上进行抽样!

5.2 后验风险准则【贝叶斯准则是使用这个的】

5.2.1 后验风险

例题【贝叶斯决策】!!!!!

【1】第四章

【3】贝叶斯

后验分布!:

损失函数的计算后的个数等于:x的取值【抽样后数据的情况】*行动的个数!

损失函数:

行动2:变成只拿出箱子里的两个进行检查 那么需要支付1.6元,然后如果再进行赔偿!

5.2.2 决策函数

5.2.3 后验风险准则

例题5.2.3

例题5.2.4

5.3 常用损失函数下的贝叶斯估计!!!!

5.3.1 平方损失函数下的贝叶斯估计

【1】定理1在平均损失下

【2】定理2在加权平方损失

【3】定理3在多元二次损失函数

例题5.3.1

5.3.2 线性损失函数下的贝叶斯估计

【1】定理1

例题5.3.6

后验分布的积分是1

5.3.3 有限个行动问题的假设检验

 6 统计决策理论

只使用样本信息!

6.1 风险函数

6.1.1 风险函数

6.1.2 决策函数的最优性

6.1.3 统计决策中的点估计问题

6.1.4 统计决策中的区间估计问题

6.2 容许性

例题

6.3 最小最大准则

例题

例题

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/868638.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Excel数据截取及合并多行多列数据

公式一:RIGHT(A2,LEN(A2)-FINDB(")",A2)) 公式二:PHONETIC(C2:D19) 详情可以看附件。

AJAX快速入门(一) express框架的安装和使用范例

主打一个有用 首先保证安装了nodejs环境 打开终端 初始化npm npm init安装express npm i express测试样例 目录结构 样例代码 express.js //引入express const express require(express);//创建应用对象 const app express();//创建路由规则 //req是请求对象&#x…

一文清晰了解HTML——简单实例

想要仿照该页面编写HTML代码&#xff1a; 在vscode中输入&#xff01;自动生成默认模板&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevic…

第二证券股市资讯:深夜!突然暴涨75%!

一则重磅收买引发医药圈轰动。 北京时间7月8日晚间&#xff0c;美股开盘后&#xff0c;美国生物制药公司Morphic股价一度暴升超75%。音讯面上&#xff0c;生物医药巨子礼来公司官宣&#xff0c;将以57美元/股的价格现金收买Morphic&#xff0c;较上星期五的收盘价溢价79%&…

19_谷歌GoogLeNet(InceptionV1)深度学习图像分类算法

1.1 简介 GoogLeNet&#xff08;有时也称为GoogleNet或Inception Net&#xff09;是一种深度学习架构&#xff0c;由Google的研究团队在2014年提出&#xff0c;主要设计者为Christian Szegedy等人。这个模型是在当年的ImageNet大规模视觉识别挑战赛&#xff08;ILSVRC&#xf…

什么是T0策略?有没有可以持仓自动做T的策略软件?

​​行情低迷&#xff0c;持仓被套&#xff0c;不想被动等待&#xff1f;长期持股&#xff0c;想要增厚持仓收益&#xff1f;有没有可以自动做T的工具或者策略&#xff1f;日内T0交易&#xff0c;做到降低持仓成本&#xff0c;优化收益预期。 什么是T0策略&#xff1f; 可以提…

韦东山嵌入式linux系列-LED驱动程序

之前学习STM32F103C8T6的时候&#xff0c;学习过对应GPIO的输出&#xff1a; 操作STM32的GPIO需要3个步骤&#xff1a; 使用RCC开启GPIO的时钟、使用GPIO_Init函数初始化GPIO、使用输入/输出函数控制GPIO口。 【STM32】GPIO输出-CSDN博客 这里再看看STM32MP157的GPIO引脚使用…

jmeter-beanshell学习5-beanshell加减乘除运算

我用到的场景是计算金额&#xff0c;所以主要以金额为主&#xff0c;感觉这部分有点麻烦&#xff0c;直接写遇到的几个坑&#xff0c;就不演示解决的过程了。 1.最早写了个两数相减&#xff0c;但是小数精度容易出现问题。比如1-0.010.989999997这种情况&#xff0c;随便写的几…

初学SpringMVC之执行原理

Spring MVC 是基于 Java 实现 MVC 的轻量级 Web 框架 导入 jar 包 pom.xml 文件导入依赖&#xff1a; <dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>4.13.2</version></dependency><dep…

YOLOv9:一个关注信息丢失问题的目标检测

本文来自公众号“AI大道理” 当前的深度学习方法关注的是如何设计最合适的目标函数&#xff0c;使模型的预测结果最接近地面的真实情况。同时&#xff0c;必须设计一个适当的体系结构&#xff0c;以方便获取足够的预测信息。 现有方法忽略了一个事实&#xff0c;即输入数据在逐…

docker安装以及简单使用

如何安装安装 yum install -y yum-utils yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo # 列出可用的版本 yum list docker-ce.x86_64 --showduplicates | sort -r yum install -y docker-ce-23.0.6-1.el8 #开机自动启动 …

day02_员工管理

文章目录 新增员工需求分析和设计代码开发功能测试代码完善录入的用户名已存在&#xff0c;抛出异常后没有处理新增员工的时候&#xff0c;创建人id和修改人id设置为了固定值ThreadLocal&#xff08;面试题&#xff09; 分页查询问题解决 启用禁用员工账号需求和分析代码设计 编…

Vue3项目打包优化

前言 本文介绍在实际项目中进行打包优化过程 目前评分 good npm install web-vitals在App.vue加入如下代码测试网页性能指标 import { onLCP, onINP, onCLS, onFCP, onTTFP } from web-vitals/attributiononCLS(console.log) onINP(console.log) onLCP(console.log) onFCP(…

cfDNA甲基化疾病早筛研究思路分享

游离DNA&#xff08;Circulating free DNA&#xff0c;cfDNA&#xff09;是人体组织释放到血液等循环体系中降解的DNA片段&#xff0c;是一种新型的肿瘤分子标志物。ctDNA甲基化是重要的表观学修饰之一&#xff0c;可以在不改变基因序列的情况下&#xff0c;改变遗传表现&#…

身边的故事(十五):阿文的故事:再消失

物镜人非&#xff0c;沧海桑田。像我们这些普通的凡人&#xff0c;哪有什么试错的机会&#xff0c;每走一步都是如履薄冰&#xff0c;小心谨慎&#xff0c;错一步可能就会万劫不复。唉&#xff0c;如果...唉...哪有什么如果... 阿文的房子很快装修完成&#xff0c;入新房那天就…

ubantu安装k8s集群服务

进行主机优化配置 参考&#xff1a; 修改主机名称 hostnamectl set-hostname k8s-node03 关闭swap分区 swapoff -a #临时关闭 sed -i /\/swap/s/^/# /etc/fstab #永久关闭 增加主机解析 cat >> /etc/hosts << EOF 10.1.60.119 k8s-master01 10.1.60.12…

zdppy+onlyoffice+vue3解决文档加载和文档强制保存时弹出警告的问题

解决过程 第一次排查 最开始排查的是官方文档说的 https://api.onlyoffice.com/editors/troubleshooting#key 解决方案。参考的是官方的 https://github.com/ONLYOFFICE/document-server-integration/releases/latest/download/Python.Example.zip 基于Django的Python代码。 …

短视频美化:成都柏煜文化传媒有限公司

短视频美化&#xff1a;创意与技术的艺术交融 在数字时代的浪潮中&#xff0c;短视频以其独特的魅力迅速崛起&#xff0c;成为人们生活中不可或缺的一部分。从记录生活点滴到分享创意灵感&#xff0c;短视频以其短小精悍、形式多样的特点&#xff0c;让每个人都能成为自己故事…

Linux安装elasticsearch单机版

一、检查内核 uname -a uname -m 二、下载版本 下载版本选择自己服务器相同的内核版本 我这边是aaech64 ES下载地址 Kibana 下载地址 二、上传服务器解压 tar -xvf elasticsearch-8.14.1-linux-aarch64.tar.gz 三、安装ES 因为ES不能用root用户启动先创建用户 #新增 es …

vue-cli 脚手架详细介绍

4 vue-cli 脚手架 1 脚手架介绍 vue-cli也叫vue脚手架,vue-cli是vue官方提供的一个全局命令工具&#xff0c;这个命令可以帮助我们快速的创建一个vue项目的基础架子。 脚手架&#xff1a;搭建好的一个架子&#xff0c;我们在架子上进行开发 开箱即用零配置基于webpack、webpac…