Java常用算法集合扩容机制分析

基础篇

基础篇要点:算法、数据结构、基础设计模式

1. 二分查找

要求

  • 能够用自己语言描述二分查找算法
  • 能够手写二分查找代码
  • 能够解答一些变化后的考法

算法描述

  1. 前提:有已排序数组 A(假设已经做好)

  2. 定义左边界 L、右边界 R,确定搜索范围,循环执行二分查找(3、4两步)

  3. 获取中间索引 M = Floor((L+R) /2)

  4. 中间索引的值 A[M] 与待搜索的值 T 进行比较

    ① A[M] == T 表示找到,返回中间索引

    ② A[M] > T,中间值右侧的其它元素都大于 T,无需比较,中间索引左边去找,M - 1 设置为右边界,重新查找

    ③ A[M] < T,中间值左侧的其它元素都小于 T,无需比较,中间索引右边去找, M + 1 设置为左边界,重新查找

  5. 当 L > R 时,表示没有找到,应结束循环

更形象的描述请参考:binary_search.html

算法实现

public static int binarySearch(int[] a, int t) {int l = 0, r = a.length - 1, m;while (l <= r) {m = (l + r) / 2;if (a[m] == t) {return m;} else if (a[m] > t) {r = m - 1;} else {l = m + 1;}}return -1;
}Copy to clipboardErrorCopied

测试代码

public static void main(String[] args) {int[] array = {1, 5, 8, 11, 19, 22, 31, 35, 40, 45, 48, 49, 50};int target = 47;int idx = binarySearch(array, target);System.out.println(idx);
}Copy to clipboardErrorCopied

解决整数溢出问题

当 l 和 r 都较大时,l + r 有可能超过整数范围,造成运算错误,解决方法有两种:

int m = l + (r - l) / 2;Copy to clipboardErrorCopied

还有一种是:

int m = (l + r) >>> 1;Copy to clipboardErrorCopied

其它考法

  1. 有一个有序表为 1,5,8,11,19,22,31,35,40,45,48,49,50 当二分查找值为 48 的结点时,查找成功需要比较的次数

  2. 使用二分法在序列 1,4,6,7,15,33,39,50,64,78,75,81,89,96 中查找元素 81 时,需要经过( )次比较

  3. 在拥有128个元素的数组中二分查找一个数,需要比较的次数最多不超过多少次

对于前两个题目,记得一个简要判断口诀:奇数二分取中间,偶数二分取中间靠左。对于后一道题目,需要知道公式:

$$n = log_2N = log_{10}N/log_{10}2$$

其中 n 为查找次数,N 为元素个数

2. 冒泡排序

要求

  • 能够用自己语言描述冒泡排序算法
  • 能够手写冒泡排序代码
  • 了解一些冒泡排序的优化手段

算法描述

  1. 依次比较数组中相邻两个元素大小,若 a[j] > a[j+1],则交换两个元素,两两都比较一遍称为一轮冒泡,结果是让最大的元素排至最后
  2. 重复以上步骤,直到整个数组有序

更形象的描述请参考:bubble_sort.html

算法实现

public static void bubble(int[] a) {for (int j = 0; j < a.length - 1; j++) {// 一轮冒泡boolean swapped = false; // 是否发生了交换for (int i = 0; i < a.length - 1 - j; i++) {System.out.println("比较次数" + i);if (a[i] > a[i + 1]) {Utils.swap(a, i, i + 1);swapped = true;}}System.out.println("第" + j + "轮冒泡"+ Arrays.toString(a));if (!swapped) {break;}}
}Copy to clipboardErrorCopied
  • 优化点1:每经过一轮冒泡,内层循环就可以减少一次
  • 优化点2:如果某一轮冒泡没有发生交换,则表示所有数据有序,可以结束外层循环

进一步优化

public static void bubble_v2(int[] a) {int n = a.length - 1;while (true) {int last = 0; // 表示最后一次交换索引位置for (int i = 0; i < n; i++) {System.out.println("比较次数" + i);if (a[i] > a[i + 1]) {Utils.swap(a, i, i + 1);last = i;}}n = last;System.out.println("第轮冒泡"+ Arrays.toString(a));if (n == 0) {break;}}
}Copy to clipboardErrorCopied
  • 每轮冒泡时,最后一次交换索引可以作为下一轮冒泡的比较次数,如果这个值为零,表示整个数组有序,直接退出外层循环即可

3. 选择排序

要求

  • 能够用自己语言描述选择排序算法
  • 能够比较选择排序与冒泡排序
  • 理解非稳定排序与稳定排序

算法描述

  1. 将数组分为两个子集,排序的和未排序的,每一轮从未排序的子集中选出最小的元素,放入排序子集

  2. 重复以上步骤,直到整个数组有序

更形象的描述请参考:selection_sort.html

算法实现

public static void selection(int[] a) {for (int i = 0; i < a.length - 1; i++) {// i 代表每轮选择最小元素要交换到的目标索引int s = i; // 代表最小元素的索引for (int j = s + 1; j < a.length; j++) {if (a[s] > a[j]) { // j 元素比 s 元素还要小, 更新 ss = j;}}if (s != i) {swap(a, s, i);}System.out.println(Arrays.toString(a));}
}Copy to clipboardErrorCopied
  • 优化点:为减少交换次数,每一轮可以先找最小的索引,在每轮最后再交换元素

与冒泡排序比较

  1. 二者平均时间复杂度都是 $O(n^2)$

  2. 选择排序一般要快于冒泡,因为其交换次数少

  3. 但如果集合有序度高,冒泡优于选择

  4. 冒泡属于稳定排序算法,而选择属于不稳定排序

    • 稳定排序指,按对象中不同字段进行多次排序,不会打乱同值元素的顺序
    • 不稳定排序则反之

稳定排序与不稳定排序

System.out.println("=================不稳定================");
Card[] cards = getStaticCards();
System.out.println(Arrays.toString(cards));
selection(cards, Comparator.comparingInt((Card a) -> a.sharpOrder).reversed());
System.out.println(Arrays.toString(cards));
selection(cards, Comparator.comparingInt((Card a) -> a.numberOrder).reversed());
System.out.println(Arrays.toString(cards));System.out.println("=================稳定=================");
cards = getStaticCards();
System.out.println(Arrays.toString(cards));
bubble(cards, Comparator.comparingInt((Card a) -> a.sharpOrder).reversed());
System.out.println(Arrays.toString(cards));
bubble(cards, Comparator.comparingInt((Card a) -> a.numberOrder).reversed());
System.out.println(Arrays.toString(cards));Copy to clipboardErrorCopied

都是先按照花色排序(♠♥♣♦),再按照数字排序(AKQJ...)

  • 不稳定排序算法按数字排序时,会打乱原本同值的花色顺序

    [[♠7], [♠2], [♠4], [♠5], [♥2], [♥5]]
    [[♠7], [♠5], [♥5], [♠4], [♥2], [♠2]]Copy to clipboardErrorCopied

    原来 ♠2 在前 ♥2 在后,按数字再排后,他俩的位置变了

  • 稳定排序算法按数字排序时,会保留原本同值的花色顺序,如下所示 ♠2 与 ♥2 的相对位置不变

    [[♠7], [♠2], [♠4], [♠5], [♥2], [♥5]]
    [[♠7], [♠5], [♥5], [♠4], [♠2], [♥2]]Copy to clipboardErrorCopied

4. 插入排序

要求

  • 能够用自己语言描述插入排序算法
  • 能够比较插入排序与选择排序

算法描述

  1. 将数组分为两个区域,排序区域和未排序区域,每一轮从未排序区域中取出第一个元素,插入到排序区域(需保证顺序)

  2. 重复以上步骤,直到整个数组有序

更形象的描述请参考:insertion_sort.html

算法实现

// 修改了代码与希尔排序一致
public static void insert(int[] a) {// i 代表待插入元素的索引for (int i = 1; i < a.length; i++) {int t = a[i]; // 代表待插入的元素值int j = i;System.out.println(j);while (j >= 1) {if (t < a[j - 1]) { // j-1 是上一个元素索引,如果 > t,后移a[j] = a[j - 1];j--;} else { // 如果 j-1 已经 <= t, 则 j 就是插入位置break;}}a[j] = t;System.out.println(Arrays.toString(a) + " " + j);}
}Copy to clipboardErrorCopied

与选择排序比较

  1. 二者平均时间复杂度都是 $O(n^2)$

  2. 大部分情况下,插入都略优于选择

  3. 有序集合插入的时间复杂度为 $O(n)$

  4. 插入属于稳定排序算法,而选择属于不稳定排序

提示

插入排序通常被同学们所轻视,其实它的地位非常重要。小数据量排序,都会优先选择插入排序

5. 希尔排序

要求

  • 能够用自己语言描述希尔排序算法

算法描述

  1. 首先选取一个间隙序列,如 (n/2,n/4 … 1),n 为数组长度

  2. 每一轮将间隙相等的元素视为一组,对组内元素进行插入排序,目的有二

    ① 少量元素插入排序速度很快

    ② 让组内值较大的元素更快地移动到后方

  3. 当间隙逐渐减少,直至为 1 时,即可完成排序

更形象的描述请参考:shell_sort.html

算法实现

private static void shell(int[] a) {int n = a.length;for (int gap = n / 2; gap > 0; gap /= 2) {// i 代表待插入元素的索引for (int i = gap; i < n; i++) {int t = a[i]; // 代表待插入的元素值int j = i;while (j >= gap) {// 每次与上一个间隙为 gap 的元素进行插入排序if (t < a[j - gap]) { // j-gap 是上一个元素索引,如果 > t,后移a[j] = a[j - gap];j -= gap;} else { // 如果 j-1 已经 <= t, 则 j 就是插入位置break;}}a[j] = t;System.out.println(Arrays.toString(a) + " gap:" + gap);}}
}Copy to clipboardErrorCopied

参考资料

  • https://en.wikipedia.org/wiki/Shellsort

6. 快速排序

要求

  • 能够用自己语言描述快速排序算法
  • 掌握手写单边循环、双边循环代码之一
  • 能够说明快排特点
  • 了解洛穆托与霍尔两种分区方案的性能比较

算法描述

  1. 每一轮排序选择一个基准点(pivot)进行分区
    1. 让小于基准点的元素的进入一个分区,大于基准点的元素的进入另一个分区
    2. 当分区完成时,基准点元素的位置就是其最终位置
  2. 在子分区内重复以上过程,直至子分区元素个数少于等于 1,这体现的是分而治之的思想 (divide-and-conquer)
  3. 从以上描述可以看出,一个关键在于分区算法,常见的有洛穆托分区方案、双边循环分区方案、霍尔分区方案

更形象的描述请参考:quick_sort.html

单边循环快排(lomuto 洛穆托分区方案)

  1. 选择最右元素作为基准点元素

  2. j 指针负责找到比基准点小的元素,一旦找到则与 i 进行交换

  3. i 指针维护小于基准点元素的边界,也是每次交换的目标索引

  4. 最后基准点与 i 交换,i 即为分区位置

public static void quick(int[] a, int l, int h) {if (l >= h) {return;}int p = partition(a, l, h); // p 索引值quick(a, l, p - 1); // 左边分区的范围确定quick(a, p + 1, h); // 左边分区的范围确定
}private static int partition(int[] a, int l, int h) {int pv = a[h]; // 基准点元素int i = l;for (int j = l; j < h; j++) {if (a[j] < pv) {if (i != j) {swap(a, i, j);}i++;}}if (i != h) {swap(a, h, i);}System.out.println(Arrays.toString(a) + " i=" + i);// 返回值代表了基准点元素所在的正确索引,用它确定下一轮分区的边界return i;
}Copy to clipboardErrorCopied

双边循环快排(不完全等价于 hoare 霍尔分区方案)

  1. 选择最左元素作为基准点元素
  2. j 指针负责从右向左找比基准点小的元素,i 指针负责从左向右找比基准点大的元素,一旦找到二者交换,直至 i,j 相交
  3. 最后基准点与 i(此时 i 与 j 相等)交换,i 即为分区位置

要点

  1. 基准点在左边,并且要先 j 后 i

  2. while( i **< j** && a[j] > pv ) j--

  3. while ( i < j && a[i] <= pv ) i++

private static void quick(int[] a, int l, int h) {if (l >= h) {return;}int p = partition(a, l, h);quick(a, l, p - 1);quick(a, p + 1, h);
}private static int partition(int[] a, int l, int h) {int pv = a[l];int i = l;int j = h;while (i < j) {// j 从右找小的while (i < j && a[j] > pv) {j--;}// i 从左找大的while (i < j && a[i] <= pv) {i++;}swap(a, i, j);}swap(a, l, j);System.out.println(Arrays.toString(a) + " j=" + j);return j;
}Copy to clipboardErrorCopied

快排特点

  1. 平均时间复杂度是 $O(nlog_2⁡n )$,最坏时间复杂度 $O(n^2)$

  2. 数据量较大时,优势非常明显

  3. 属于不稳定排序

洛穆托分区方案 vs 霍尔分区方案

  • 霍尔的移动次数平均来讲比洛穆托少3倍
  • 快速排序分区:Hoare与Lomuto

补充代码说明

  • day01.sort.QuickSort3 演示了空穴法改进的双边快排,比较次数更少
  • day01.sort.QuickSortHoare 演示了霍尔分区的实现
  • day01.sort.LomutoVsHoare 对四种分区实现的移动次数比较

7. ArrayList

要求

  • 掌握 ArrayList 扩容规则

扩容规则

  1. ArrayList() 会使用长度为零的数组

  2. ArrayList(int initialCapacity) 会使用指定容量的数组

  3. public ArrayList(Collection<? extends E> c) 会使用 c 的大小作为数组容量

  4. add(Object o) 首次扩容为 10,再次扩容为上次容量的 1.5 倍

  5. addAll(Collection c) 没有元素时,扩容为 Math.max(10, 实际元素个数),有元素时为 Math.max(原容量 1.5 倍, 实际元素个数)

其中第 4 点必须知道,其它几点视个人情况而定

提示

  • 测试代码见 day01.list.TestArrayList ,这里不再列出
  • 注意的是,示例中用反射方式来更直观地反映 ArrayList 的扩容特征,但从 JDK 9 由于模块化的影响,对反射做了较多限制,需要在运行测试代码时添加 VM 参数 --add-opens java.base/java.util=ALL-UNNAMED 方能运行通过,后面的例子都有相同问题

代码说明

  • day01.list.TestArrayList#arrayListGrowRule 演示了 add(Object) 方法的扩容规则,输入参数 n 代表打印多少次扩容后的数组长度

8. Iterator

要求

  • 掌握什么是 Fail-Fast、什么是 Fail-Safe

Fail-Fast 与 Fail-Safe

  • ArrayList 是 fail-fast 的典型代表,遍历的同时不能修改,尽快失败

  • CopyOnWriteArrayList 是 fail-safe 的典型代表,遍历的同时可以修改,原理是读写分离

提示

  • 测试代码见 day01.list.FailFastVsFailSafe,这里不再列出

9. LinkedList

要求

  • 能够说清楚 LinkedList 对比 ArrayList 的区别,并重视纠正部分错误的认知

LinkedList

  1. 基于双向链表,无需连续内存
  2. 随机访问慢(要沿着链表遍历)
  3. 头尾插入删除性能高
  4. 占用内存多

ArrayList

  1. 基于数组,需要连续内存
  2. 随机访问快(指根据下标访问)
  3. 尾部插入、删除性能可以,其它部分插入、删除都会移动数据,因此性能会低
  4. 可以利用 cpu 缓存,局部性原理

代码说明

  • day01.list.ArrayListVsLinkedList#randomAccess 对比随机访问性能
  • day01.list.ArrayListVsLinkedList#addMiddle 对比向中间插入性能
  • day01.list.ArrayListVsLinkedList#addFirst 对比头部插入性能
  • day01.list.ArrayListVsLinkedList#addLast 对比尾部插入性能
  • day01.list.ArrayListVsLinkedList#linkedListSize 打印一个 LinkedList 占用内存
  • day01.list.ArrayListVsLinkedList#arrayListSize 打印一个 ArrayList 占用内存

10. HashMap

要求

  • 掌握 HashMap 的基本数据结构
  • 掌握树化
  • 理解索引计算方法、二次 hash 的意义、容量对索引计算的影响
  • 掌握 put 流程、扩容、扩容因子
  • 理解并发使用 HashMap 可能导致的问题
  • 理解 key 的设计

1)基本数据结构

  • 1.7 数组 + 链表
  • 1.8 数组 + (链表 | 红黑树)

更形象的演示,见资料中的 hash-demo.jar,运行需要 jdk14 以上环境,进入 jar 包目录,执行下面命令

java -jar --add-exports java.base/jdk.internal.misc=ALL-UNNAMED hash-demo.jarCopy to clipboardErrorCopied

2)树化与退化

树化意义

  • 红黑树用来避免 DoS 攻击,防止链表超长时性能下降,树化应当是偶然情况,是保底策略
  • hash 表的查找,更新的时间复杂度是 $O(1)$,而红黑树的查找,更新的时间复杂度是 $O(log_2⁡n )$,TreeNode 占用空间也比普通 Node 的大,如非必要,尽量还是使用链表
  • hash 值如果足够随机,则在 hash 表内按泊松分布,在负载因子 0.75 的情况下,长度超过 8 的链表出现概率是 0.00000006,树化阈值选择 8 就是为了让树化几率足够小

树化规则

  • 当链表长度超过树化阈值 8 时,先尝试扩容来减少链表长度,如果数组容量已经 >=64,才会进行树化

退化规则

  • 情况1:在扩容时如果拆分树时,树元素个数 <= 6 则会退化链表
  • 情况2:remove 树节点时,若 root、root.left、root.right、root.left.left 有一个为 null ,也会退化为链表

3)索引计算

索引计算方法

  • 首先,计算对象的 hashCode()
  • 再进行调用 HashMap 的 hash() 方法进行二次哈希
    • 二次 hash() 是为了综合高位数据,让哈希分布更为均匀
  • 最后 & (capacity – 1) 得到索引

数组容量为何是 2 的 n 次幂

  1. 计算索引时效率更高:如果是 2 的 n 次幂可以使用位与运算代替取模
  2. 扩容时重新计算索引效率更高: hash & oldCap == 0 的元素留在原来位置 ,否则新位置 = 旧位置 + oldCap

注意

  • 二次 hash 是为了配合 容量是 2 的 n 次幂 这一设计前提,如果 hash 表的容量不是 2 的 n 次幂,则不必二次 hash
  • 容量是 2 的 n 次幂 这一设计计算索引效率更好,但 hash 的分散性就不好,需要二次 hash 来作为补偿,没有采用这一设计的典型例子是 Hashtable

4)put 与扩容

put 流程

  1. HashMap 是懒惰创建数组的,首次使用才创建数组
  2. 计算索引(桶下标)
  3. 如果桶下标还没人占用,创建 Node 占位返回
  4. 如果桶下标已经有人占用
    1. 已经是 TreeNode 走红黑树的添加或更新逻辑
    2. 是普通 Node,走链表的添加或更新逻辑,如果链表长度超过树化阈值,走树化逻辑
  5. 返回前检查容量是否超过阈值,一旦超过进行扩容

1.7 与 1.8 的区别

  1. 链表插入节点时,1.7 是头插法,1.8 是尾插法

  2. 1.7 是大于等于阈值且没有空位时才扩容,而 1.8 是大于阈值就扩容

  3. 1.8 在扩容计算 Node 索引时,会优化

扩容(加载)因子为何默认是 0.75f

  1. 在空间占用与查询时间之间取得较好的权衡
  2. 大于这个值,空间节省了,但链表就会比较长影响性能
  3. 小于这个值,冲突减少了,但扩容就会更频繁,空间占用也更多

5)并发问题

扩容死链(1.7 会存在)

1.7 源码如下:

void transfer(Entry[] newTable, boolean rehash) {int newCapacity = newTable.length;for (Entry<K,V> e : table) {while(null != e) {Entry<K,V> next = e.next;if (rehash) {e.hash = null == e.key ? 0 : hash(e.key);}int i = indexFor(e.hash, newCapacity);e.next = newTable[i];newTable[i] = e;e = next;}}
}Copy to clipboardErrorCopied
  • e 和 next 都是局部变量,用来指向当前节点和下一个节点
  • 线程1(绿色)的临时变量 e 和 next 刚引用了这俩节点,还未来得及移动节点,发生了线程切换,由线程2(蓝色)完成扩容和迁移

image-20210831084325075

  • 线程2 扩容完成,由于头插法,链表顺序颠倒。但线程1 的临时变量 e 和 next 还引用了这俩节点,还要再来一遍迁移

image-20210831084723383

  • 第一次循环
    • 循环接着线程切换前运行,注意此时 e 指向的是节点 a,next 指向的是节点 b
    • e 头插 a 节点,注意图中画了两份 a 节点,但事实上只有一个(为了不让箭头特别乱画了两份)
    • 当循环结束是 e 会指向 next 也就是 b 节点

image-20210831084855348

  • 第二次循环
    • next 指向了节点 a
    • e 头插节点 b
    • 当循环结束时,e 指向 next 也就是节点 a

image-20210831085329449

  • 第三次循环
    • next 指向了 null
    • e 头插节点 a,a 的 next 指向了 b(之前 a.next 一直是 null),b 的 next 指向 a,死链已成
    • 当循环结束时,e 指向 next 也就是 null,因此第四次循环时会正常退出

image-20210831085543224

数据错乱(1.7,1.8 都会存在)

  • 代码参考 day01.map.HashMapMissData,具体调试步骤参考视频

补充代码说明

  • day01.map.HashMapDistribution 演示 map 中链表长度符合泊松分布
  • day01.map.DistributionAffectedByCapacity 演示容量及 hashCode 取值对分布的影响
    • day01.map.DistributionAffectedByCapacity#hashtableGrowRule 演示了 Hashtable 的扩容规律
    • day01.sort.Utils#randomArray 如果 hashCode 足够随机,容量是否是 2 的 n 次幂影响不大
    • day01.sort.Utils#lowSameArray 如果 hashCode 低位一样的多,容量是 2 的 n 次幂会导致分布不均匀
    • day01.sort.Utils#evenArray 如果 hashCode 偶数的多,容量是 2 的 n 次幂会导致分布不均匀
    • 由此得出对于容量是 2 的 n 次幂的设计来讲,二次 hash 非常重要
  • day01.map.HashMapVsHashtable 演示了对于同样数量的单词字符串放入 HashMap 和 Hashtable 分布上的区别

6)key 的设计

key 的设计要求

  1. HashMap 的 key 可以为 null,但 Map 的其他实现则不然
  2. 作为 key 的对象,必须实现 hashCode 和 equals,并且 key 的内容不能修改(不可变)
  3. key 的 hashCode 应该有良好的散列性

如果 key 可变,例如修改了 age 会导致再次查询时查询不到

public class HashMapMutableKey {public static void main(String[] args) {HashMap<Student, Object> map = new HashMap<>();Student stu = new Student("张三", 18);map.put(stu, new Object());System.out.println(map.get(stu));stu.age = 19;System.out.println(map.get(stu));}static class Student {String name;int age;public Student(String name, int age) {this.name = name;this.age = age;}public String getName() {return name;}public void setName(String name) {this.name = name;}public int getAge() {return age;}public void setAge(int age) {this.age = age;}@Overridepublic boolean equals(Object o) {if (this == o) return true;if (o == null || getClass() != o.getClass()) return false;Student student = (Student) o;return age == student.age && Objects.equals(name, student.name);}@Overridepublic int hashCode() {return Objects.hash(name, age);}}
}Copy to clipboardErrorCopied

String 对象的 hashCode() 设计

  • 目标是达到较为均匀的散列效果,每个字符串的 hashCode 足够独特
  • 字符串中的每个字符都可以表现为一个数字,称为 $S_i$,其中 i 的范围是 0 ~ n - 1
  • 散列公式为: $S_0∗31^{(n-1)}+ S_1∗31^{(n-2)}+ … S_i ∗ 31^{(n-1-i)}+ …S_{(n-1)}∗31^0$
  • 31 代入公式有较好的散列特性,并且 31 * h 可以被优化为
    • 即 $32 ∗h -h $
    • 即 $2^5 ∗h -h$
    • 即 $h≪5 -h$

11. 单例模式

要求

  • 掌握五种单例模式的实现方式
  • 理解为何 DCL 实现时要使用 volatile 修饰静态变量
  • 了解 jdk 中用到单例的场景

饿汉式

public class Singleton1 implements Serializable {private Singleton1() {if (INSTANCE != null) {throw new RuntimeException("单例对象不能重复创建");}System.out.println("private Singleton1()");}private static final Singleton1 INSTANCE = new Singleton1();public static Singleton1 getInstance() {return INSTANCE;}public static void otherMethod() {System.out.println("otherMethod()");}public Object readResolve() {return INSTANCE;}
}Copy to clipboardErrorCopied
  • 构造方法抛出异常是防止反射破坏单例
  • readResolve() 是防止反序列化破坏单例

枚举饿汉式

public enum Singleton2 {INSTANCE;private Singleton2() {System.out.println("private Singleton2()");}@Overridepublic String toString() {return getClass().getName() + "@" + Integer.toHexString(hashCode());}public static Singleton2 getInstance() {return INSTANCE;}public static void otherMethod() {System.out.println("otherMethod()");}
}Copy to clipboardErrorCopied
  • 枚举饿汉式能天然防止反射、反序列化破坏单例

懒汉式

public class Singleton3 implements Serializable {private Singleton3() {System.out.println("private Singleton3()");}private static Singleton3 INSTANCE = null;// Singleton3.classpublic static synchronized Singleton3 getInstance() {if (INSTANCE == null) {INSTANCE = new Singleton3();}return INSTANCE;}public static void otherMethod() {System.out.println("otherMethod()");}}Copy to clipboardErrorCopied
  • 其实只有首次创建单例对象时才需要同步,但该代码实际上每次调用都会同步
  • 因此有了下面的双检锁改进

双检锁懒汉式

public class Singleton4 implements Serializable {private Singleton4() {System.out.println("private Singleton4()");}private static volatile Singleton4 INSTANCE = null; // 可见性,有序性public static Singleton4 getInstance() {if (INSTANCE == null) {synchronized (Singleton4.class) {if (INSTANCE == null) {INSTANCE = new Singleton4();}}}return INSTANCE;}public static void otherMethod() {System.out.println("otherMethod()");}
}Copy to clipboardErrorCopied

为何必须加 volatile:

  • INSTANCE = new Singleton4() 不是原子的,分成 3 步:创建对象、调用构造、给静态变量赋值,其中后两步可能被指令重排序优化,变成先赋值、再调用构造
  • 如果线程1 先执行了赋值,线程2 执行到第一个 INSTANCE == null 时发现 INSTANCE 已经不为 null,此时就会返回一个未完全构造的对象

内部类懒汉式

public class Singleton5 implements Serializable {private Singleton5() {System.out.println("private Singleton5()");}private static class Holder {static Singleton5 INSTANCE = new Singleton5();}public static Singleton5 getInstance() {return Holder.INSTANCE;}public static void otherMethod() {System.out.println("otherMethod()");}
}Copy to clipboardErrorCopied
  • 避免了双检锁的缺点

JDK 中单例的体现

  • Runtime 体现了饿汉式单例
  • Console 体现了双检锁懒汉式单例
  • Collections 中的 EmptyNavigableSet 内部类懒汉式单例
  • ReverseComparator.REVERSE_ORDER 内部类懒汉式单例
  • Comparators.NaturalOrderComparator.INSTANCE 枚举饿汉式单例

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/867589.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

东芝TB6560AHQ/AFG步进电机驱动IC:解锁卓越的电机控制性能

作为一名工程师&#xff0c;一直在寻找可靠且高效的组件来应用于你的项目中。东芝的TB6560AHQ/AFG步进电机驱动IC能够提供精准且多功能的电机控制&#xff0c;完全符合现代应用的高要求&#xff0c;保证高性能和易用性。在这篇文章中&#xff0c;我们将探讨TB6560AHQ/AFG的主要…

硅纪元视角 | 国内首款鸿蒙人形机器人“夸父”开启应用新篇章

在数字化浪潮的推动下&#xff0c;人工智能&#xff08;AI&#xff09;正成为塑造未来的关键力量。硅纪元视角栏目紧跟AI科技的最新发展&#xff0c;捕捉行业动态&#xff1b;提供深入的新闻解读&#xff0c;助您洞悉技术背后的逻辑&#xff1b;汇聚行业专家的见解&#xff0c;…

es6新语法

es6新语法 1 什么是ES6 JS语法分三块 ECMAScript : 基础语法BOM 浏览器对象 history location windowDOM 文档对象 document 编程语言JavaScript是ECMAScript的实现和扩展 。ECMAScript是由ECMA&#xff08;一个类似W3C的标准组织&#xff09;参与进行标准化的语法规范。ECMAS…

医疗器械企业CRM系统推荐清单(2024版)

近年来&#xff0c;我国医疗器械行业在国家政策支持、医改深入、人口老龄化和消费能力提升等因素推动下&#xff0c;得到了快速发展&#xff0c;正日益成为创新能力增强、市场需求旺盛的朝阳产业。然而&#xff0c;行业也面临价格压力、市场份额重新分配、合规风险以及产品和服…

解决 MEX 文件 ‘xxx.mexw64‘ 无效: 找不到指定的模块。的问题

1.问题描述 在matlab R2021b中运行编译好后的gptoolbox工具箱中的函数[SVtemp,SFtemp,IF] selfintersect(V,F);报错如下 MEX 文件 E:\MATLAB_File\gptoolbox\mex\selfintersect.mexw64 无效: 找不到指定的模块。出错 offset_bunny (第 15 行) [SVtemp,SFtemp,IF] selfinter…

论文略读:Learning and Forgetting Unsafe Examples in Large Language Models

随着发布给公众的大语言模型&#xff08;LLMs&#xff09;数量的增加&#xff0c;迫切需要了解这些模型从第三方定制的微调数据中学习的安全性影响。论文研究了在包含不安全内容的噪声定制数据上微调的LLMs的行为&#xff0c;这些数据集包含偏见、毒性和有害性 发现虽然对齐的L…

3033. 修改矩阵 Easy

给你一个下标从 0 开始、大小为 m x n 的整数矩阵 matrix &#xff0c;新建一个下标从 0 开始、名为 answer 的矩阵。使 answer 与 matrix 相等&#xff0c;接着将其中每个值为 -1 的元素替换为所在列的 最大 元素。 返回矩阵 answer 。 示例 1&#xff1a; 输入&#xff1a;…

查看电脑显卡(NVIDIA)应该匹配什么版本的CUDA Toolkit

被串行计算逼到要吐时&#xff0c;决定重拾CUDa了&#xff0c;想想那光速般的处理感觉&#xff08;夸张了&#xff09;不要太爽&#xff0c;记下我的闯关记录。正好我的电脑配了NVIDIA独显&#xff0c;GTX1650&#xff0c;有菜可以炒呀&#xff0c;没有英伟达的要绕道了。回到正…

【Linux】生物信息学常用命令

参考资料来自生信技能树 先输入echo export PS1"[\033]2;\h:\u \w\007\033[33;1m]\u \033[35;1m\t\033[0m [\033[36;1m]\w[\033[0m]\n[\e[32;1m]$ [\e[0m]" >> ~/.bashrc 再输入source ~/.bashrc就能够让命令字体带上颜色&#xff0c;同时命令将会在下一行开…

软件设计之Java入门视频(12)

软件设计之Java入门视频(12) 视频教程来自B站尚硅谷&#xff1a; 尚硅谷Java入门视频教程&#xff0c;宋红康java基础视频 相关文件资料&#xff08;百度网盘&#xff09; 提取密码&#xff1a;8op3 idea 下载可以关注 软件管家 公众号 学习内容&#xff1a; 该视频共分为1-7…

每日一题~ (判断是否是合法的出栈序列)

大概的题意&#xff1a; 将 1-n 按照顺序进栈&#xff0c;问 输入的序列是否是合法的出栈序列。 遍历序列&#xff0c;如果当前这个值a小于 栈顶的值&#xff0c;说明它还未进栈&#xff08;因为我们是按照顺序进栈的&#xff09;&#xff0c;所以我们将 一些元素进栈&#xff…

nacos源码 nacos注册中心1.4.x 源码 spring cloud alibaba 的discovery做了什么 nacos客户端是如何启动的(二)

spring-cloud-alibaba-nacos-discovery 老版本中如何调用nacos的 1. 整体结构&#xff1a; 2. 思考: 如果你来做&#xff0c;如何做client 向server注册服务&#xff1a; 1.2.1 读yml&#xff0c;或本地文件找到服务器地址&#xff0c;以及其他配置 1.2.2 向server注册服务 1.2…

6800和8080单片机读写时序和液晶屏接口

前言&#xff1a; 随着单片机发展&#xff0c;集成度越来越高&#xff0c;因此目前单片机较少使用RD和WR信号操作外设&#xff0c;因此很多时候&#xff0c;变成了6800和8080单片机读写液晶屏了。早期的读写本质上是对一个地址进行即时的操作&#xff0c;现在可能是等数据送到…

网易游戏员工怒怼丁磊上热搜:每天员工陪你演戏点赞有意思吗

【头部财经】近日&#xff0c;网易游戏一员工在内部群怒怼丁磊的聊天记录曝光&#xff0c;引发网友关注。据头部财经了解&#xff0c;该员工名叫石佳煊&#xff0c;是网易游戏的游戏开发工程师&#xff0c;毕业于华盛顿大学&#xff0c;已在网易工作四年多。 截图显示&#xf…

【国产开源可视化引擎Meta2d.js】铅笔

铅笔 铅笔是可以任意涂鸦的绘图小工具 在线体验&#xff1a; 乐吾乐2D可视化 示例&#xff1a; // 开始铅笔绘画 meta2d.drawingPencil();// 鼠标抬起结束// 停止铅笔绘画&#xff08;关闭铅笔绘画状态&#xff09; meta2d.stopPencil(); 国产开源 乐吾乐潜心研发&#xff…

基于星火大模型的群聊对话分角色要素提取挑战赛

赛事任务与数据 2024 iFLYTEK A.I.开发者大赛-讯飞开放平台 (xfyun.cn) 从给定的<客服>与<客户>的群聊对话中, 提取出指定的字段信息&#xff0c;待提取的全部字段见下数据说明。 赛题方提供了184条真实场景的群聊对话数据以及人工标注后的字段提取结果&#xf…

AIGC专栏12——EasyAnimateV3发布详解 支持图文生视频 最大支持960x960x144帧视频生成

AIGC专栏12——EasyAnimateV3发布详解 支持图&文生视频 最大支持960x960x144帧视频生成 学习前言项目特点生成效果相关地址汇总项目主页Huggingface体验地址Modelscope体验地址源码下载地址 EasyAnimate V3详解技术储备Diffusion Transformer (DiT)Hybrid Motion ModuleU-V…

XXL-JOB中断信号感知

目录 背景 思路 实现逻辑 总结 背景 在使用xxl-job框架时&#xff0c;由于系统是由线程池去做异步逻辑&#xff0c;然后主线程等待&#xff0c;在控制台手动停止时&#xff0c;会出现异步线程不感知信号中断的场景&#xff0c;如下场景 而此时如果人工在控制台停止xxl-job执…

笔记13:switch多分支选择语句

引例&#xff1a; 输入1-5中的任意一共数字&#xff0c;对应的打印字符A,B,C,D,E int num 0; printf("Input a number[1,5]:"); scanf("%d"&#xff0c;&num); if( num 1)printf("A\n"); else if(num2)printf("B\n"); else i…

Alibaba Cloud Toolkit前端使用proxy代理配置

1、vscode 先安装插件 Alibaba Cloud Toolkit 2、前端代码&#xff1a; /personnel: {// target: http://xxx.xx.xxx.xx:9100, // 测试环境// target: http://xxx.xx.xxx.xx:9200, // 线上环境target: http://127.0.0.1:18002, // toolkit 代理changeOrigin: true,},3、打开插…