数值分析笔记(五)线性方程组解法

三角分解法
在这里插入图片描述

A的杜利特分解公式如下:
u 1 j = a 1 j ( j = 1 , 2 , ⋯ , n ) , l i 1 = a i 1 / u 11 ( i = 2 , 3 , ⋯ , n ) , u k j = a k j − ∑ m = 1 k − 1 l b m u m j ⇒ a k j ( j = k , k + 1 , ⋯ , n ) , l i k = ( a i k − ∑ m = 1 k − 1 l i n u m k ) / u k k ⇒ a k k ( i = k + 1 , k + 2 , ⋯ , n ) ( k = 2 , 3 , ⋯ , n ) . \begin{aligned}&u_{1j}=a_{1j}\quad(j=1,2,\cdots,n),\\&l_{i1}=a_{i1}/u_{11}\quad(i=2,3,\cdots,n) ,\\&u_{kj}=a_{kj}-\sum_{m=1}^{k-1}l_{bm}u_{mj}\Rightarrow a_{kj}\quad(j=k,k+1,\cdots,n) ,\\&l_{ik}=\left(a_{ik}-\sum_{m=1}^{k-1}l_{in}u_{mk}\right)\Big/u_{kk}\Rightarrow a_{kk}\quad(i=k+1,k+2,\cdots,n)\\&(k=2,3,\cdots,n).\end{aligned} u1j=a1j(j=1,2,,n),li1=ai1/u11(i=2,3,,n),ukj=akjm=1k1lbmumjakj(j=k,k+1,,n),lik=(aikm=1k1linumk)/ukkakk(i=k+1,k+2,,n)(k=2,3,,n).

楚列斯基分解

对于n阶(n>1)对称正定矩阵,楚列斯基分解 A = L ∗ L T A=L*L^T A=LLT,是唯一的,即
( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a m ) = ( l 11 l 21 l 22 ⋮ ⋮ ⋱ l n 1 l n 2 ⋯ l m ) ( l 11 l 21 ⋯ l n 1 l 22 ⋯ l n 2 ⋱ ⋮ l m ) , \begin{pmatrix}a_{11}&a_{12}&\cdots&a_{1n}\\a_{21}&a_{22}&\cdots&a_{2n}\\\vdots&\vdots&&\vdots\\a_{n1}&a_{n2}&\cdots&a_{m}\end{pmatrix}=\begin{pmatrix}l_{11}\\l_{21}&l_{22}\\\vdots&\vdots&\ddots\\l_{n1}&l_{n2}&\cdots&l_{m}\end{pmatrix}\begin{pmatrix}l_{11}&l_{21}&\cdots&l_{n1}\\&l_{22}&\cdots&l_{n2}\\&&\ddots&\vdots\\&&&l_{m}\end{pmatrix}, a11a21an1a12a22an2a1na2nam = l11l21ln1l22ln2lm l11l21l22ln1ln2lm ,

{ l k k = a k k − ∑ m = 1 k − 1 l k m 2 , l i k = ( a i k − ∑ m = 1 k − 1 l i m l k m ) / l k k ( i = k + 1 , k + 2 , ⋯ , n ) \begin{aligned}&\begin{cases}l_{kk}&=\sqrt{a_{kk}-\sum_{m=1}^{k-1}l_{km}^2} ,\\l_{ik}&=\left(a_{ik}-\sum_{m=1}^{k-1}l_{im}l_{km}\right)/l_{kk}&(i=k+1,k+2,\cdots,n)\end{cases}\end{aligned} lkklik=akkm=1k1lkm2 ,=(aikm=1k1limlkm)/lkk(i=k+1,k+2,,n)

向量范数
∥ x ∥ 1 = ∑ i = 1 n ∣ x i ∣ , ∥ x ∥ 2 = ∑ i = 1 n x i 2 , ∥ x ∥ ∞ = max ⁡ 1 ⩽ i ⩽ n ∣ x i ∣ , \begin{gathered} \parallel x\parallel_1=\sum_{i=1}^n\mid x_i\mid, \\ \parallel x\parallel_2=\sqrt{\sum_{i=1}^nx_i^2} , \\ \parallel x\parallel_\infty=\max_{1\leqslant i\leqslant n}\mid x_i\mid, \end{gathered} x1=i=1nxi,x2=i=1nxi2 ,x=1inmaxxi,
矩阵范数
∥ A ∥ 1 = max ⁡ 1 ⩽ j ⩽ n ∑ i = 1 n ∣ a i j ∣ , 列范数 ∥ A ∥ ∞ = max ⁡ 1 ⩽ i ⩽ n ∑ j = 1 n ∣ a i j ∣ , 行函数 ∥ A ∥ 2 = λ max ⁡ ( A T A ) , 谱范数 ∥ A ∥ F = ∑ i = 1 n ∑ j = 1 n a i j 2 . F − 范数 \begin{gathered} \parallel A\parallel_{1}=\max_{1\leqslant j\leqslant n}\sum_{i=1}^{n}\mid a_{ij}\mid, 列范数\\ \parallel A\parallel_{\infty}=\max_{1\leqslant i\leqslant n}\sum_{j=1}^{n}\mid a_{ij}\mid , 行函数\\ \parallel A\parallel_{2}=\sqrt{\lambda_{\max}(A^{\mathrm{T}}A)} , 谱范数\\ \parallel A\parallel_F=\sqrt{\sum_{i=1}^n\sum_{j=1}^na_{ij}^2}. F-范数 \end{gathered} A1=1jnmaxi=1naij,列范数A=1inmaxj=1naij,行函数A2=λmax(ATA) ,谱范数AF=i=1nj=1naij2 .F范数
矩阵A的条件数
C o n d ( A ) = ∥ A − 1 ∥ ∥ A ∥ \mathrm{Cond}(A)=\parallel A^{-1}\parallel\parallel A\parallel Cond(A)=∥A1∥∥A

简单迭代法

设有n阶线性方程组 A x = b Ax=b Ax=b A A A为n阶非奇异矩阵, A x = b Ax=b Ax=b等价变形为 x = B x + g x=Bx+g x=Bx+g,给定初始向量 x ( 0 ) x^{(0)} x(0)可得到
x ( k + 1 ) = B x ( k ) + g ( k = 0 , 1 , ⋯ ) x^{(k+1)}=Bx^{(k)}+g\quad(k=0,1,\cdots) x(k+1)=Bx(k)+g(k=0,1,)
若向量序列收敛,其收敛的向量为原方程组的解。其收敛的充要条件是谱半径 ρ ( B ) < 1 \rho(B) < 1 ρ(B)<1.

如果在计算第 i i i个分量 x i ( k + 1 ) x_i^{(k+1)} xi(k+1),前面的 i − 1 i-1 i1个分量用最新的 x 1 ( k + 1 ) x_1^{(k+1)} x1(k+1) x 2 ( k + 1 ) x_2^{(k+1)} x2(k+1)…, x i − 1 ( k + 1 ) x_{i-1}^{(k+1)} xi1(k+1)

而不是 x 1 ( k ) x_1^{(k)} x1(k) x 2 ( k ) x_2^{(k)} x2(k),…, x i − 1 ( k ) x_{i-1}^{(k)} xi1(k),则是简单迭代法对应的高斯-赛德尔迭代法。

当简单迭代法的迭代矩阵 B B B满足 ∥ B ∥ 1 < 1 \parallel B\parallel_{1} < 1 B1<1 ∥ B ∥ ∞ < 1 \parallel B\parallel_{\infty} < 1 B<1,对应的对应的高斯-赛德尔迭代法关于任意初始向量收敛。

雅可比迭代法

设有n阶线性方程组 A x = b Ax=b Ax=b A A A为n阶非奇异矩阵,且对角元 a i i ≠ 0 ( i = 1 , 2 , 3 , . . . , n ) a_{ii} \neq 0 (i=1,2,3,...,n) aii=0(i=1,2,3,...,n)

将A如下分解,A=L+D+U,即
A = ( 0 a 21 0 ⋮ ⋮ ⋱ a n 1 a n 2 ⋯ 0 ) + ( a 11 a 22 ⋱ a n n ) + ( 0 a 12 ⋯ a 1 n 0 ⋯ a 2 n ⋱ ⋮ 0 ) , A=\begin{pmatrix}0\\a_{21}&0\\\vdots&\vdots&\ddots\\a_{n1}&a_{n2}&\cdots&0\end{pmatrix}+\begin{pmatrix}a_{11}\\&a_{22}\\&&\ddots\\&&&a_{nn}\end{pmatrix}+\begin{pmatrix}0&a_{12}&\cdots&a_{1n}\\&0&\cdots&a_{2n}\\&&\ddots&\vdots\\&&&0\end{pmatrix}, A= 0a21an10an20 + a11a22ann + 0a120a1na2n0 ,
A x = b Ax=b Ax=b等价于 ( L + D + U ) x = b (L+D+U)x=b (L+D+U)x=b,

整理得,
x = − D − 1 ( L + U ) x + D − 1 b x=-D^{-1}\left(L+U\right)x+D^{-1}b x=D1(L+U)x+D1b
B J = − D − 1 ( L + U ) , g = D − 1 b B_J=-D^{-1}\left(L+U\right),g=D^{-1}b BJ=D1(L+U),g=D1b,则构造公式
x ( k + 1 ) = B J x ( k ) + g ( k = 0 , 1 , ⋅ ⋅ ⋅ ) x^{(k+1)}=B_Jx^{(k)}+g\quad(k=0,1,\cdotp\cdotp\cdotp) x(k+1)=BJx(k)+g(k=0,1,⋅⋅⋅)
为雅可比迭代法,称
B J = − D − 1 ( L + U ) = ( 0 − a 12 a 11 ⋯ − a 1 n a 11 − a 21 a 22 0 ⋯ − a 2 n a 22 ⋮ ⋮ ⋱ ⋮ − a n 1 a n n − a n 2 a n n ⋯ 0 ) B_J=-D^{-1}(L+U)=\begin{pmatrix}0&-\frac{a_{12}}{a_{11}}&\cdots&-\frac{a_{1n}}{a_{11}}\\\\-\frac{a_{21}}{a_{22}}&0&\cdots&-\frac{a_{2n}}{a_{22}}\\\vdots&\vdots&\ddots&\vdots\\\\-\frac{a_{n1}}{a_{nn}}&-\frac{a_{n2}}{a_{nn}}&\cdots&0\end{pmatrix} BJ=D1(L+U)= 0a22a21annan1a11a120annan2a11a1na22a2n0
为雅可比矩阵。

雅可比迭代法关于任意初始向量 x ( 0 ) x^{(0)} x(0)收敛的充要条件是 ρ ( B j ) < 1 \rho(B_{j}) < 1 ρ(Bj)<1.

其对应的高斯-赛德尔迭代法为
x ( k + 1 ) = − ( D + L ) − 1 U x ( k ) + ( D + L ) − 1 b x^{(k+1)}=- (D+L)^{-1}Ux^{(k)}+(D+L)^{-1}b x(k+1)=(D+L)1Ux(k)+(D+L)1b
若系数矩阵A严格对角占优,高斯-赛德尔迭代法对于任意初始向量 x ( 0 ) x^{(0)} x(0)收敛。

若系数矩阵A对称正定,高斯-赛德尔迭代法对于任意初始向量 x ( 0 ) x^{(0)} x(0)收敛。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/867526.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uniapp 在手机上导出excel

1.创建excelDev.js文件 export default {exportExcel(fileData, documentName excel) {plus.io.requestFileSystem(plus.io.PUBLIC_DOCUMENTS, function(fs) {let rootObj fs.rootlet fullPath rootObj.fullPathconsole.log("开始导出数据")// 创建文件夹rootObj…

破解宇宙终极奥秘,战胜昊天无上束缚

在幽邃的暗夜下&#xff0c;细品着夫子与昊天跨越千年的智勇交锋&#xff0c;我的思绪不禁飘向了更加深远的宇宙边际&#xff0c;回响起那些关于人类如何挑战天命、战胜上天的过往。 宇宙奥秘 在浩瀚无垠的宇宙深渊中&#xff0c;隐藏着一段超越凡尘的规则。昊天&#xff0c;…

2025湖北武汉智慧教育装备信息化展/智慧校园展/湖北高博会

2025武汉教育装备展,2025武汉智慧教育展,2025武汉智慧校园展,2025武汉教育信息化展,2025武汉智慧教室展,湖北智慧校园展,湖北智慧教室展,武汉教学设备展,湖北高教会,湖北高博会 2025湖北武汉智慧教育装备信息化展/智慧校园展/湖北高博会 2025第10届武汉国际教育装备及智慧校园…

计算机网络——数据链路层(以太网扩展、虚拟局域网、高速以太网)

在许多情况下&#xff0c;我们希望把以太网的覆盖范围扩展。本节先讨论在物理层把以太网扩展&#xff0c;然后讨论在数据链路层把以太网扩展。这种扩展的以太网在网络层看来仍然是一个网络。 在物理层扩展以太网 现在&#xff0c;扩展主机和集线器之间的距离的一种简单方法就是…

jmeter-beanshell学习3-beanshell获取请求报文和响应报文

前后两个报文&#xff0c;后面报文要用前面报文的响应结果&#xff0c;这个简单&#xff0c;正则表达式或者json提取器&#xff0c;都能实现。但是如果后面报文要用前面请求报文的内容&#xff0c;感觉有点难。最早时候把随机数写在自定义变量&#xff0c;前后两个接口都用这个…

小暑节气,选对劳保鞋,让安全与清凉同行

在七月炽热的阳光下&#xff0c;我们迎来了二十四节气中的小暑&#xff0c;标志着盛夏时节的正式开始。随着气温的节节攀升&#xff0c;不仅大自然万物进入了生长的旺季&#xff0c;我们的工作与日常生活也面临着新的挑战——如何在高温环境下保障自身安全&#xff0c;成为了不…

实例演示kafka stream消息流式处理流程及原理

以下结合案例&#xff1a;统计消息中单词出现次数&#xff0c;来测试并说明kafka消息流式处理的执行流程 Maven依赖 <dependencies><dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-streams</artifactId><exclusio…

vue3【实战】来回拖拽放置图片

效果预览 技术要点 img 标签默认就是可拖拽的&#xff08;a 标签也是&#xff09;事件 e 内的 dataTransfer 对象可用于临时存储事件过程中的数据拖拽事件的默认行为是用浏览器新开页签打开被拖拽对象&#xff0c;所以通常需要禁用默认的浏览器行为被拖拽元素必须设置 id&#…

【pyqt-实训训练】串口助手

串口助手 前言一、ui设计二、ui的控件命名三、ui转py使用类的方法【扩展】使用ui文件导入&#xff01;P7的小错误解决办法 总结 前言 我的惯例就是万物之始&#xff0c;拜见吾师&#x1f970;⇨pyqt串口合集 最开始的时候我想的是&#xff0c;学了那么久的pyqt&#xff0c;我…

ASCII码对照表(Matplotlib颜色对照表)

文章目录 1、简介1.1 颜色代码 2、Matplotlib库简介2.1 简介2.2 安装2.3 后端2.4 入门例子 3、Matplotlib库颜色3.1 概述3.2 颜色图的分类3.3 颜色格式表示3.4 内置颜色映射3.5 xkcd 颜色映射3.6 颜色命名表 4、Colorcet库5、颜色对照表结语 1、简介 1.1 颜色代码 颜色代码是…

线程同步66666

1. 概述 当有多个线程访问同一个共享资源&#xff08;临界资源&#xff09;时&#xff0c;且不允许同时访问&#xff0c;那么就需要线程同步。常见的线程同步方式&#xff1a;互斥锁、读写锁、条件变量、信号量。 2. 互斥锁 互斥锁的方式可以简单概括为&#xff1a;锁定操作…

【MYSQL】InnoDB引擎为什么选可重复读作为默认隔离级别

InnoDB引擎为什么选可重复读作为默认隔离级别 一般的DBMS系统&#xff0c;默认都会使用读提交&#xff08;Read-Comitted&#xff0c;RC&#xff09;作为默认隔离级别&#xff0c;如Oracle、SQL Server等&#xff0c;而MySQL却使用可重复读&#xff08;Read-Repeatable&#x…

alphazero学习

AlphaGoZero是AlphaGo算法的升级版本。不需要像训练AlphaGo那样&#xff0c;不需要用人类棋局这些先验知识训练&#xff0c;用MCTS自我博弈产生实时动态产生训练样本。用MCTS来创建训练集&#xff0c;然后训练nnet建模的策略网络和价值网络。就是用MCTSPlayer产生的数据来训练和…

【JVM 的内存模型】

1. JVM内存模型 下图为JVM内存结构模型&#xff1a; 两种执行方式&#xff1a; 解释执行&#xff1a;JVM是由C语言编写的&#xff0c;其中有C解释器&#xff0c;负责先将Java语言解释翻译为C语言。缺点是经过一次JVM翻译&#xff0c;速度慢一点。JIT执行&#xff1a;JIT编译器…

ubuntu设置开启自动挂载sftp

1. 前言 与其说 ubuntu 开启自动挂载 sftp, 更确切的说应该是 nautilus (ubuntu上默认的文件管理器) 开机自动挂载 sftp。 因为 这里即使选择永远记住&#xff0c;开机也不会自动挂载 sftp 2.设置方法 gnome-session-properties #开机只启动设置命令设置 gio mount sftp…

经典双运算放大器LM358

前言 LM358双运放有几十年的历史了吧&#xff1f;通用运放&#xff0c;很常用&#xff0c;搞电路的避免不了接触运放&#xff0c;怎么选择运放&#xff0c;是工程师关心的问题吧&#xff1f; 从本文开始&#xff0c;将陆续发一些常用的运放&#xff0c;大家选型可以参考&#…

浪潮信息携手算力企业为华东产业集群布局提供高质量算力支撑

随着信息技术的飞速发展&#xff0c;算力已成为推动数字经济发展的核心力量。近日&#xff0c;浪潮信息与五家领先的算力运营公司在南京正式签署战略合作协议&#xff0c;共同加速华东地区智算基础设施布局&#xff0c;为区域经济发展注入新动力。 进击的算力 江苏持续加码智算…

springboot三层架构详细讲解

目录 springBoot三层架构0.简介1.各层架构1.1 Controller层1.2 Service层1.3 ServiceImpl1.4 Mapper1.5 Entity1.6 Mapper.xml 2.各层之间的联系2.1 Controller 与 Service2.2 Service 与 ServiceImpl2.3 Service 与 Mapper2.4 Mapper 与 Mapper.xml2.5 Service 与 Entity2.6 C…

Exploting an API endpoiint using documentation

HTTP request methods https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods 第一步:burp抓包刷新页面 httphistory中只能看到两个记录,可以看下Response,是HTML页面,说明这里有HTML页面 ,但是没有发现特定的API接口。 第二步:用户登录 转到用户登录的功能点处…

Nacos源码分析:心跳机制、健康检查、服务发现、AP集群

文章目录 心跳机制与服务健康检查NacosClient端NacosServer端NacosServer端健康检查 服务发现NacosClient端NacosServer端 AP集群从源码启动集群心跳设计原理各节点状态同步服务实例数据同步服务实例状态变动同步 心跳机制与服务健康检查 官方文档&#xff1a;发送某个实例的心…