【C++】 ——【模板初阶】——基础详解

目录

1. 泛型编程

1.1 泛型编程的概念

1.2 泛型编程的历史与发展

1.3 泛型编程的优势

1.4 泛型编程的挑战

2. 函数模板

2.1 函数模板概念

2.2 函数模板格式

2.3 函数模板的原理

2.4 函数模板的实例化

2.5 模板参数的匹配原则

2.6 函数模板的特化

2.7 函数模板的使用注意事项

2.8 函数模板的高级用法

3. 类模板

3.1 类模板的定义格式

3.2 类模板的实例化

3.3 类模板的特化

3.4 类模板成员函数的定义

3.5 类模板的使用注意事项

3.6 类模板的高级用法

结论


 

 

 

823d638fbfbd45f08e401991f36f26ae.pngd6b1d13a84e94373a3d5dffec2d17b20.gif 

专栏:C++学习笔记

第一卷:C++ ———前言知识

第二卷:【C++】——入门基础知识

第二卷升华:【C++】——入门基础知识超详解

第三卷:第一篇【C++】————类与对象(上)-基础知识

第三卷:第一篇升华:剖析【C++】——类与对象(上)超详解——小白篇

第三卷:第二篇:剖析【C++】——类与对象(中)——小白篇—超详解

第三卷:第三篇:剖析【C++】——类和对象(下篇)——超详解——小白篇

第四卷:【C/C++】——小白初步了解——内存管理

在C++中,模板是一种强大的特性,可以实现代码的泛型编程,从而减少代码的重复,提高代码的复用性和可维护性。本文将详细讲解C++模板,涵盖以下几部分内容:

  1. 泛型编程
  2. 函数模板
  3. 类模板

1. 泛型编程

1.1 泛型编程的概念

泛型编程是一种编程范式,旨在编写与类型无关的代码,使得同一段代码能够处理不同的数据类型。这种编程方式提高了代码的通用性和复用性。在C++中,模板是实现泛型编程的核心机制。

1.2 泛型编程的历史与发展

泛型编程的概念最早由Alexander Stepanov和David Musser在1980年代提出。1990年代,泛型编程在C++标准模板库(STL)的实现中得到了广泛应用。STL提供了一组基于模板的容器、算法和迭代器,这些组件极大地提高了C++程序的效率和灵活性。

1.3 泛型编程的优势

  • 代码复用:模板允许开发人员编写一次代码,适用于多种数据类型,减少了代码的重复。
  • 类型安全:模板在编译时进行类型检查,避免了运行时错误。
  • 高效:模板在编译时实例化,生成的代码与手写的特定类型代码一样高效。

1.4 泛型编程的挑战

尽管泛型编程有许多优势,但它也带来了一些挑战:

  • 复杂性:模板代码的语法和错误信息较为复杂,初学者可能难以理解。
  • 编译时间:模板实例化会增加编译时间,尤其是在大型项目中。
  • 代码膨胀:由于模板实例化会生成多个版本的函数或类,可能导致可执行文件的体积增大。

2. 函数模板

2.1 函数模板概念

函数模板是用于创建通用函数的蓝图,允许我们编写与数据类型无关的函数。通过使用函数模板,可以避免为不同数据类型编写相同功能的多个函数,从而减少代码重复。

2.2 函数模板格式

函数模板的定义格式如下:

template <typename T>
返回类型 函数名(参数列表) {// 函数体
}

例如,一个简单的加法函数模板:

template <typename T>
T add(T a, T b) {return a + b;
}

2.3 函数模板的原理

函数模板的原理是通过在编译期间进行模板的实例化,将模板参数替换为实际参数类型,从而生成具体的函数版本。例如,调用add<int>(1, 2)会实例化一个int类型的add函数:

int add(int a, int b) {return a + b;
}

2.4 函数模板的实例化

函数模板的实例化可以是显式的或隐式的。隐式实例化是指编译器自动推断模板参数类型,而显式实例化是我们明确指定模板参数类型。例如:

隐式实例化:

add(1, 2); // 推断为 add<int>(1, 2)

显式实例化:

add<int>(1, 2);

2.5 模板参数的匹配原则

模板参数的匹配原则是编译器如何确定模板参数类型的规则。当调用函数模板时,编译器会尝试匹配模板参数和函数参数类型。如果匹配成功,则进行实例化;否则,编译会失败。匹配原则包括:

  1. 类型推断:编译器根据传递的实际参数类型推断模板参数类型。例如,add(1, 2)推断为add<int>(1, 2)
  2. 显式指定:调用模板函数时显式指定模板参数类型。例如,add<int>(1, 2)
  3. 默认参数:模板参数可以有默认类型。例如:
    template <typename T = int>
    T multiply(T a, T b) {return a * b;
    }
    

2.6 函数模板的特化

在某些情况下,我们可能需要对特定类型进行特殊处理,这时可以使用模板特化。模板特化允许我们为某些特定类型定义模板的特化版本。例如:

template <>
const char* add<const char*>(const char* a, const char* b) {static char result[100];strcpy(result, a);strcat(result, b);return result;
}

上述代码特化了add函数模板,使其可以处理const char*类型的字符串连接。

2.7 函数模板的使用注意事项

  1. 模板参数推断:在调用模板函数时,编译器会根据传递的参数推断模板参数类型。如果推断失败,需要显式指定模板参数类型。
  2. 编译错误信息:模板代码的编译错误信息通常比较复杂,调试时需要耐心和细致。特别是在模板嵌套和特化时,错误信息可能难以解读。
  3. 代码膨胀:由于模板实例化会生成多个函数版本,可能导致可执行文件体积增大。每次实例化模板时,都会生成一份新的代码副本,这在某些情况下可能导致二进制文件过大。
  4. 与非模板函数的冲突:在同一作用域中,如果存在与模板函数签名相同的非模板函数,可能会导致二义性和冲突。为避免这种情况,可以使用命名空间或显式实例化来区分模板函数和非模板函数。

2.8 函数模板的高级用法

函数模板的高级用法包括模板参数包(variadic templates)、模板别名(alias templates)等。例如,使用模板参数包实现一个通用的打印函数:

template <typename T>
void print(T arg) {std::cout << arg << std::endl;
}template <typename T, typename... Args>
void print(T arg, Args... args) {std::cout << arg << ", ";print(args...);
}

上述代码利用模板参数包实现了一个递归打印函数,可以处理任意数量的参数。 

3. 类模板

3.1 类模板的定义格式

类模板允许我们创建一个通用的类,该类可以处理不同的数据类型。类模板的定义格式如下:

template <typename T>
class ClassName {// 类成员和方法
};

例如,一个简单的栈(Stack)类模板:

template <typename T>
class Stack {
private:std::vector<T> elements;public:void push(T const& element) {elements.push_back(element);}void pop() {elements.pop_back();}T top() const {return elements.back();}
};

在这个例子中,Stack类模板定义了一个通用的栈,可以存储任意类型的数据。 

3.2 类模板的实例化

类模板的实例化类似于函数模板。例如:

Stack<int> intStack;
intStack.push(1);
intStack.push(2);
intStack.pop();
int topElement = intStack.top();

以上代码实例化了一个int类型的Stack对象,并对其进行了操作。

3.3 类模板的特化

与函数模板类似,我们也可以对类模板进行特化。例如:

template <>
class Stack<bool> {
private:std::vector<bool> elements;public:void push(bool element) {elements.push_back(element);}void pop() {elements.pop_back();}bool top() const {return elements.back();}
};

上述代码特化了Stack类模板,使其可以处理bool类型。

3.4 类模板成员函数的定义

类模板的成员函数可以在类外定义。定义时需要再次指定模板参数。例如:

template <typename T>
void Stack<T>::push(T const& element) {elements.push_back(element);
}template <typename T>
void Stack<T>::pop() {elements.pop_back();
}template <typename T>
T Stack<T>::top() const {return elements.back();
}

这种定义方式使得类模板的实现更加清晰和模块化。

3.5 类模板的使用注意事项

  1. 模板参数推断:在实例化类模板时,需要明确指定模板参数类型,编译器无法自动推断。
  2. 代码膨胀:由于模板实例化会生成多个类版本,可能导致可执行文件体积增大。每次实例化模板时,都会生成一份新的代码副本,这在某些情况下可能导致二进制文件过大。
  3. 编译错误信息:模板代码的编译错误信息通常比较复杂,调试时需要耐心和细致。特别是在模板嵌套和特化时,错误信息可能难以解读。
  4. 与非模板类的冲突:在同一作用域中,如果存在与模板类签名相同的非模板类,可能会导致二义性和冲突。为避免这种情况,可以使用命名空间或显式实例化来区分模板类和非模板类。

3.6 类模板的高级用法

类模板的高级用法包括嵌套模板、模板模板参数(template template parameter)等。例如,使用模板模板参数实现一个通用的容器适配器:

template <typename T, template <typename> class Container = std::deque>
class Stack {
private:Container<T> elements;public:void push(T const& element) {elements.push_back(element);}void pop() {elements.pop_back();}T top() const {return elements.back();}bool isEmpty() const {return elements.empty();}
};

上述代码定义了一个通用的Stack类模板,可以使用不同的容器类型(如std::dequestd::vector等)作为底层存储。 

ae313b7f5e334a7483c315433dae79d7.png

结论

通过函数模板和类模板,C++提供了强大的泛型编程能力,使得代码可以更加通用和复用。在实际编程中,合理地使用模板可以显著提高代码的质量和维护性。希望通过本文的讲解,大家能够对C++模板有一个全面的理解,并能够在自己的项目中灵活应用。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/866159.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

html+css+js淘宝商品界面

点击商品&#xff0c;alert弹出商品ID 图片使用了占位符图片&#xff0c;加载可能会慢一点 你可以把它换成自己的图片&#x1f603;源代码在图片后面 效果图 源代码 <!DOCTYPE html> <html lang"zh"> <head> <meta charset"UTF-8"…

时空预测+特征分解!高性能!EMD-Transformer和Transformer多变量交通流量时空预测对比

时空预测特征分解&#xff01;高性能&#xff01;EMD-Transformer和Transformer多变量交通流量时空预测对比 目录 时空预测特征分解&#xff01;高性能&#xff01;EMD-Transformer和Transformer多变量交通流量时空预测对比效果一览基本介绍程序设计参考资料 效果一览 基本介绍…

番外篇 | YOLOv8改进之即插即用全维度动态卷积ODConv + 更换Neck网络为GFPN

前言:Hello大家好,我是小哥谈。本文所做出的改进是在YOLOv8中引入即插即用全维度动态卷积ODConv和更换Neck网络为GFPN,希望大家学习之后能够有所收获~!🌈 目录 🚀1.基础概念 🚀2.网络结构 🚀3.添加步骤 🚀4.改进方法 🍀🍀步骤1:block.py文件修改…

在TkinterGUI界面显示WIFI网络摄像头(ESP32s3)视频画面

本实验结合了之前写过的两篇文章Python调用摄像头&#xff0c;实时显示视频在Tkinter界面以及ESP32 S3搭载OV2640摄像头释放热点&#xff08;AP&#xff09;工作模式–Arduino程序&#xff0c;当然如果手头有其他可以获得网络摄像头的URL即用于访问摄像头视频流的网络地址&…

解析MySQL核心技术:视图的实用指南与实践案例

在数据库管理中&#xff0c;MySQL视图&#xff08;View&#xff09;是一种强大的功能&#xff0c;利用它可以简化复杂查询、提高数据安全性以及增强代码的可维护性。本篇文章将详细介绍MySQL视图的相关知识&#xff0c;包括视图的创建、修改、删除、使用场景以及常见的最佳实践…

Python学生信息管理系统(完整代码)

引言&#xff1a;&#xff08;假装不是一个大学生课设&#xff09;在现代教育管理中&#xff0c;学生管理系统显得尤为重要。这种系统能够帮助教育机构有效地管理学生资料、成绩、出勤以及其他教育相关活动&#xff0c;从而提高管理效率并减少人为错误。通过使用Python&#xf…

亚马逊跟卖选品erp采集,跟卖卖家的选品利器,提升选品效率!

今天给亚马逊跟卖卖家&#xff0c;分享我现在在用的两种选品方式&#xff0c;做个铺货或者是跟卖都可以&#xff0c;是不是很多卖家选品现在都是亚马逊前端页面或是新品榜单选择产品跟卖&#xff0c;这样找品这就相当于大海捞针&#xff0c;而且新品榜单的产品你能看到那其他卖…

经典卷积神经网络 LeNet

一、实例图片 #我们传入的是28*28&#xff0c;所以加了padding net nn.Sequential(nn.Conv2d(1, 6, kernel_size5, padding2), nn.Sigmoid(),nn.AvgPool2d(kernel_size2, stride2),nn.Conv2d(6, 16, kernel_size5), nn.Sigmoid(),nn.AvgPool2d(kernel_size2, stride2),nn.Flat…

Linux Swap机制关键点分析

1. page被swap出去之后,再次缺页是怎么找到找个换出的页面? 正常内存的页面是通过pte映射找到page的,swap出去的page有其特殊的方式:swap的页面page->private字段保存的是:swap_entry_t通过swap_entry_t就能找到该页面的扇区号sector_t,拿到扇区号就可以从块设备中读…

day04-组织架构

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 1.组织架构-树组件应用树形组件-用层级结构展示信息&#xff0c;可展开或折叠。 2.组织架构-树组件自定义结构3.组织架构-获取组织架构数据4.组织架构-递归转化树形…

Redis 典型应用——分布式锁

一、什么是分布式锁 在一个分布式的系统中&#xff0c;也会涉及到多个节点访问同一个公共资源的情况&#xff0c;此时就需要通过锁来做互斥控制&#xff0c;避免出现类似于 "线程安全" 的问题&#xff1b; 而 Java 中的 synchronized&#xff0c;只能在当前进程中生…

【C语言】控制台扫雷(C语言实现)

目录 博文目的实现思路项目创建文件解释 具体实现判断玩家进行游戏还是退出扫雷棋盘的确定地图初始化埋雷玩家扫雷的实现雷判断函数 源码game.cgame.h扫雷.c 博文目的 相信不少人都学习了c语言的函数&#xff0c;循环&#xff0c;分支那我们就可以写一个控制台的扫雷小游戏来检…

面向对象-封装

一.包 1.简介 当我们把所有的java类都写src下的第一层级&#xff0c;如果是项目中&#xff0c;也许会有几百个java文件。 src下的文件会很多&#xff0c;开发的时候不方便查找&#xff0c;也不方便维护如果较多的文件中有同名的&#xff0c;十分麻烦 模块1中有一个叫test.ja…

android应用的持续构建CI(二)-- jenkins集成

一、背景 接着上一篇文章&#xff0c;本文我们将使用jenkins把所有的流程串起来。 略去了对android应用的加固流程&#xff0c;重点是jenkins的job该如何配置。 二、配置jenkins job 0、新建job 选择一个自由风格的软件项目 1、参数赋值 你可以增加许多参数&#xff0c;这…

Games101学习笔记 Lecture16 Ray Tracing 4 (Monte Carlo Path Tracing)

Lecture16 Ray Tracing 4 (Monte Carlo Path Tracing 一、蒙特卡洛积分 Monte Carlo Integration二、路径追踪 Path tracing1.Whitted-Style Ray Tracings Problems2.只考虑直接光照时3.考虑全局光照①考虑物体的反射光②俄罗斯轮盘赌 RR &#xff08;得到正确shade函数&#x…

嵌入式底层系统了解

当裸机功能不复杂的时候&#xff0c;即类似与点亮一个LED灯&#xff0c;驱动LCD和OLED这样的模块&#xff0c;以及各位大学生的搭积木式的毕业设计(狗头保命&#xff09;&#xff0c;此时可以简单地分为硬件和软件层&#xff08;应用层),以及以中间层作为中间联系。 当需要实现…

深入Kafka:如何保证数据一致性与可靠性?

我是小米,一个喜欢分享技术的29岁程序员。如果你喜欢我的文章,欢迎关注我的微信公众号“软件求生”,获取更多技术干货! Hello, 大家好!我是小米,今天我们来聊一聊Kafka的一致性问题。Kafka作为一个高性能的分布式流处理平台,一直以来都备受关注。今天,我将深入探讨Kaf…

C++(第四天----拷贝函数、类的组合、类的继承)

一、拷贝构造函数&#xff08;复制构造函数&#xff09; 1、概念 拷贝构造函数&#xff0c;它只有一个参数&#xff0c;参数类型是本类的引用。如果类的设计者不写拷贝构造函数&#xff0c;编译器就会自动生成拷贝构造函数。大多数情况下&#xff0c;其作用是实现从源对象到目…

目标检测入门:3.目标检测损失函数(IOU、GIOU、GIOU)

目录 一、IOU 二、GIOU 三、DIOU 四、DIOU_Loss实战 在前面两章里面训练模型时&#xff0c;损失函数都是选择L1Loss&#xff08;平均绝对值误差&#xff08;MAE&#xff09;&#xff09;损失函数&#xff0c;L1Loss损失函数公式如下: 由公式可知&#xff0c;L1Loss损失函数…

为PPT加密:如何设置和管理“打开密码”?

在保护演示文稿的内容时&#xff0c;给PPT文件设置“打开密码”是一个简单而有效的方法。今天一起来看看如何设置和管理PPT文件的“打开密码”吧&#xff01; 一、设置PPT“打开密码” 首先&#xff0c;打开需要加密的PPT文件&#xff0c;点击左上角的“文件”选项卡&#x…