Oracle 上机

--1.(3分)查找每个部门的最高工资员工编号及其下属信息。
select e2.empno,e1.* from emp e1 join (
select * from emp where (deptno,sal) in
(select deptno,max(sal) from emp group by deptno)) e2
on
e1.mgr = e2.empno;

/*
2.(5分)
有成绩表如下(使用with子查询):
准考证号 科目 成绩
2006001 语文 119
2006001 数学 108
2006002 物理 142
2006001 化学 136
2006001 物理 127
2006002 数学 149
2006002 英语 110
2006002 语文 105
2006001 英语 98
2006002 化学 129
……
给出总分在600以上的学生准考证号。*/
with t as (select sid,sum(score) a from stu group by sid)
select sid from t where a > 600;

/*
3.(5分)
新建 stu_dent(学生表),字段:sno,sname,sex,birth,age
要求如下:
1、学号(sno)不能为空且不可重复;
2、名字(sname)不能为空;
3、性别(sex)的值只能是'男'或'女';
4、出生日期(birth)为日期格式;
5、年龄(age)为数值类型且在 0 - 100 之间;*/
create table stu_dent(
       sno char(50) primary key ,
       sname char(20) not null,
       sex char(3) check(sex in ('女','男')),
       birth date,
       age number check(age between 0 and 100)
       );
select * from stu_dent;

4.(5分)/*
某cc表数据如下:
c1    c2
--------------
1     西
1     安
1     的
2     天
2     气
3     好
……
转换为
c3    c4
--------------
1   西安的
2   天气
3   好*/
--要求:不能改变表结构及数据内容,仅在最后通过SELECT显示出这个查询结果
select c1 c3,listagg(c2,'')  within group (order by r) c4
from (select cc.*,rownum r from cc) t group by c1;


/*5.(5分)
X 市建了一个新的体育馆,每日人流量信息被记录在这三列信息中:序号(id)、日期(visit_date)、人流量(people)。
请编写一个查询语句,找出人流量的高峰期。
高峰期时,至少连续三行记录中的人流量不少于100。
例如,表stadium:
+------+------------+-----------+
| id | visit_date | people |
+------+------------+-----------+
| 1 | 2017-01-01 | 10 |
| 2 | 2017-01-02 | 109 |
| 3 | 2017-01-03 | 150 |
| 4 | 2017-01-04 | 99 |
| 5 | 2017-01-05 | 145 |
| 6 | 2017-01-06 | 1455 |
| 7 | 2017-01-07 | 199 |
| 8 | 2017-01-08 | 188 |
+------+------------+-----------+
对于上面的示例数据,输出为:
+------+------------+-----------+
| id | visit_date | people |
+------+------------+-----------+
| 5 | 2017-01-05 | 145 |
| 6 | 2017-01-06 | 1455 |
| 7 | 2017-01-07 | 199 |
| 8 | 2017-01-08 | 188 |
+------+------------+-----------+
提示:
每天只有一行记录,日期随着 id 的增加而增加。*/
with t as 
(select f.*,f.id-row_number()over(order by id) m from f601 f where people > 100)
select t.id,t.visit_date,people from 
t where t.m = (select m from
(select m,count(*) from t
group by m having count(*) >2));

/*
6.(5分)
编写一个 SQL 查询,查找所有至少连续出现三次的数字。
+----+-----+
| Id | Num |
+----+-----+
| 1 | 1 |
| 2 | 1 |
| 3 | 1 |
| 4 | 2 |
| 5 | 1 |
| 6 | 2 |
| 7 | 2 |
+----+-----+
例如,给定上面的 Logs 表, 1 是唯一连续出现至少三次的数字。
+-----------------+
| ConsecutiveNums |
+-----------------+
| 1 |
+-----------------+*/
/*create table f602(
       id number,
       numb number
       );*/
/*insert into f602 values(1,1);
insert into f602 values(2,1);
insert into f602 values(3,1);
insert into f602 values(4,2);
insert into f602 values(5,1);
insert into f602 values(6,2);
insert into f602 values(7,2);*/
select * from f602;

select numb from
(select t.*,lead(t.lead1)over(order by t.id) lead2 from
(select f.*,lead(f.numb)over(order by f.id) lead1 from f602 f)t)a
where a.lead1 = a.numb and a.lead1 = a.lead2;


/*7.(5分)
小美是一所中学的信息科技老师,她有一张 seat 座位表,平时用来储存学生名字和与他们相对应的座位 id。
其中纵列的 id 是连续递增的,小美想改变相邻俩学生的座位。 
你能不能帮她写一个 SQL query 来输出小美想要的结果呢?
示例:
+---------+---------+
| id | student |
+---------+---------+
| 1 | Abbot |
| 2 | Doris |
| 3 | Emerson |
| 4 | Green |
| 5 | Jeames |
+---------+---------+
假如数据输入的是上表,则输出结果如下:
+---------+---------+
| id | student |
+---------+---------+
| 1 | Doris |
| 2 | Abbot |
| 3 | Green |
| 4 | Emerson |
| 5 | Jeames |
+---------+---------+
注意: 
如果学生人数是奇数,则不需要改变最后一个同学的座位。*/

with seat as
(select 1 ,'Abbot' as student from dual
union all
select 2,'Doris' from dual
union all
select 3,'Emerson' from dual
union all
select 4 ,'Green' from dual
union all
select 5 ,'Jeames' from dual
)
select * from seat 
order by 
decode(student,'Doris',1,'Abbot',2,'Green',3,'Emerson',4,'Jeames',5)

/*
8.(7分)
Trips 表中保存所有出租车的行程信息。每段行程有唯一键 Id,Client_Id 和 Driver_Id 是 Users 表中 Users_Id 的外键。
Status 是检查类型,成员只有以下三种 (‘completed’, ‘cancelled_by_driver’, ‘cancelled_by_client’)。
+----+-----------+-----------+---------+--------------------+----------+
| Id | Client_Id | Driver_Id | City_Id | Status |Request_at|
+----+-----------+-----------+---------+--------------------+----------+
| 1 | 1 | 10 | 1 | completed |2013-10-01|
| 2 | 2 | 11 | 1 | cancelled_by_driver|2013-10-01|
| 3 | 3 | 12 | 6 | completed |2013-10-01|
| 4 | 4 | 13 | 6 | cancelled_by_client|2013-10-01|
| 5 | 1 | 10 | 1 | completed |2013-10-02|
| 6 | 2 | 11 | 6 | completed |2013-10-02|
| 7 | 3 | 12 | 6 | completed |2013-10-02|
| 8 | 2 | 12 | 12 | completed |2013-10-03|
| 9 | 3 | 10 | 12 | completed |2013-10-03|
| 10 | 4 | 13 | 12 | cancelled_by_driver|2013-10-03|
+----+-----------+-----------+---------+--------------------+----------+
Users 表存所有用户。每个用户有唯一键 Users_Id。Banned 表示这个用户是否被禁止,
Role 则是一个表示(‘client’, ‘driver’, ‘partner’)的枚举类型。
+----------+--------+--------+
| Users_Id | Banned | Role |
+----------+--------+--------+
| 1 | No | client |
| 2 | Yes | client |
| 3 | No | client |
| 4 | No | client |
| 10 | No | driver |
| 11 | No | driver |
| 12 | No | driver |
| 13 | No | driver |
+----------+--------+--------+
写一段 SQL 语句查出 2013年10月1日 至 2013年10月3日期间非禁止用户的取消率。
基于上表,你的 SQL 语句应返回如下结果,取消率(Cancellation Rate)保留两位小数。
取消率的计算方式如下:(被司机或乘客取消的非禁止用户生成的订单数量) / (非禁止用户生成的订单总数)
+------------+-------------------+
| Day | Cancellation Rate |
+------------+-------------------+ 
| 2013-10-01 | 0.33 | 
| 2013-10-02 | 0.00 | 
| 2013-10-03 | 0.50 | 
+------------+-------------------+*/
/*create table "Users"(
       "Users_Id" number primary key,
       "Banned" char(10) check("Banned" in ('Yes','No')),
       "Role" char(10) check("Role" in ('client','driver','partner'))
       );
insert into "Users" values(1,'No','client');
insert into "Users" values(2,'Yes','client');
insert into "Users" values(3,'No','client');
insert into "Users" values(4,'No','client');
insert into "Users" values(10,'No','driver');
insert into "Users" values(11,'No','driver');
insert into "Users" values(12,'No','driver');
insert into "Users" values(13,'No','driver');*/
/*create table Trips(
       "Id" number,
       "Client_Id" number references "Users"("Users_Id"),
       "Driver_Id" number references "Users"("Users_Id"),
       "City_Id" number,
       "Status" char(30) check("Status" in ('completed','cancelled_by_driver','cancelled_by_client')),
       "Request_at" date
);
insert into Trips values(1,1,10,1,'completed',to_date('2013-10-01','yyyy-MM-dd'));
insert into Trips values(2,2,11,1,'cancelled_by_driver',to_date('2013-10-01','yyyy-MM-dd'));
insert into Trips values(3,3,12,6,'completed',to_date('2013-10-01','yyyy-MM-dd'));
insert into Trips values(4,4,13,6,'cancelled_by_driver',to_date('2013-10-01','yyyy-MM-dd'));
insert into Trips values(5,1,10,1,'completed',to_date('2013-10-02','yyyy-MM-dd'));
insert into Trips values(6,2,11,6,'completed',to_date('2013-10-02','yyyy-MM-dd'));
insert into Trips values(7,3,12,6,'completed',to_date('2013-10-02','yyyy-MM-dd'));
insert into Trips values(8,2,12,12,'completed',to_date('2013-10-03','yyyy-MM-dd'));
insert into Trips values(9,3,12,12,'completed',to_date('2013-10-03','yyyy-MM-dd'));
insert into Trips values(10,4,12,12,'cancelled_by_driver',to_date('2013-10-03','yyyy-MM-dd'));
*/

with t as
(select t.*,u1.*,u2."Banned" Banned2 from Trips t join "Users" u1 on u1."Users_Id" = t."Client_Id" 
join "Users" u2 on u2."Users_Id" = t."Driver_Id"  )

select t."Request_at" "Day",
round(sum(decode(trim(t."Status"),'cancelled_by_driver',1,0))/count(*),2) "Cancellation Rate"
 from t where t."Banned" = 'No ' and t.Banned2 = 'No'  group by t."Request_at";
 
 
/*9.(10分)
Spending table:
+---------+------------+----------+--------+
| user_id | spend_date | platform | amount |
+---------+------------+----------+--------+
| 1 | 2019-07-01 | mobile | 100 |
| 1 | 2019-07-01 | desktop | 100 |
| 2 | 2019-07-01 | mobile | 100 |
| 2 | 2019-07-02 | mobile | 100 |
| 3 | 2019-07-01 | desktop | 100 |
| 3 | 2019-07-02 | desktop | 100 |
+---------+------------+----------+--------+
这张表记录了用户在一个在线购物网站的支出历史,该在线购物平台同时拥有桌面端('desktop')和手机端('mobile')的应用程序。
写一段 SQL 来查找每天 仅 使用手机端用户、仅 使用桌面端用户和 同时 使用桌面端和手机端的用户人数和总支出金额。 
查询结果格式如下例所示:
Result table:
+------------+----------+--------------+-------------+
| spend_date | platform | total_amount | total_users |
+------------+----------+--------------+-------------+
| 2019-07-01 | desktop | 100 | 1 |
| 2019-07-01 | mobile | 100 | 1 |
| 2019-07-01 | both | 200 | 1 |
| 2019-07-02 | desktop | 100 | 1 |
| 2019-07-02 | mobile | 100 | 1 |
| 2019-07-02 | both | 0 | 0 |
+------------+----------+--------------+-------------+*/
/*create table Spending(
       user_id number,
       spend_date date,
       platform char(10),
       amount number
);
insert into Spending values(1,to_date('2019-07-01','yyyy-MM-dd'),'mobile',100);
insert into Spending values(1,to_date('2019-07-01','yyyy-MM-dd'),'desktop',100);
insert into Spending values(2,to_date('2019-07-01','yyyy-MM-dd'),'mobile',100);
insert into Spending values(2,to_date('2019-07-02','yyyy-MM-dd'),'mobile',100);
insert into Spending values(3,to_date('2019-07-01','yyyy-MM-dd'),'desktop',100);
insert into Spending values(3,to_date('2019-07-02','yyyy-MM-dd'),'desktop',100);*/

select *from spending 

select * from(
select spend_date,decode(s,1,'mobile',3,'desktop','both') platform,
total_amount,count(*) total_users from
(select user_id,spend_date,sum(amount) total_amount,sum(decode(trim(platform),'mobile',1,'desktop',3)) s
from 
(select * from spending order by spend_date,user_id) 
group by user_id,spend_date

group by
spend_date,decode(s,1,'mobile',3,'desktop','both') ,
total_amount order by spend_date,total_amount)
union all 
select to_date('2019-07-02','yyyy-MM-dd'),'both',0,0 from dual;

select distinct spend_date,
case when platform=platform1 then platform
     else 'both'
end platform,
case when a=1 then sum(amount)over(partition by a order by user_id)
     else amount
end total_amount
from
(select s1.user_id user_id,s1.spend_date spend_date,
s1.platform platform,s2.platform platform1,s1.amount amount,
case when s1.platform!=s2.platform then 1
     else 0
end a
from spending s1 join spending s2 on s1.user_id=s2.user_id and s1.spend_date=s2.spend_date 
) order by spend_date,total_amount;
-------------------------------------------------
select * from spending;
with aa as(select s1.user_id,s1.spend_date,s1.platform,s1.amount,s2.platform as a,s2.amount as b from Spending s1 left join Spending s2 
on s1.user_id=s2.user_id and s1.spend_date=s2.spend_date and s1.platform <>s2.platform)
select spend_date,platform,sum(amount),count(*) from aa where a is null group by spend_date,platform 
union all
select spend_date,'both',
       sum(case when a is not null then amount else 0 end),
       sum(case when a is not null then 1 else 0 end)/2 from aa  group by spend_date

----------------------------------------------
select t.spend_date,t.platform,ifnull(t3.total_amount,0) as total_amount ,ifnull(t3.total_users,0) as total_users from
(select distinct spend_date,'both' as platform from Spending 
union all 
select distinct spend_date,'mobile' as platform from Spending
union all
select distinct spend_date,'desktop' as platform from Spending)
t left join 
(select spend_date,platform,sum(amount) as `total_amount`,count(*) as `total_users` from (
    select spend_date,user_id,sum(amount) `amount`,
case when count(distinct platform) > 1 then 'both'
else platform end as platform
from Spending group by spend_date,user_id
) t2 group by spend_date,platform
) t3 on t.spend_date = t3.spend_date and t.platform = t3.platform;
--------------------------------------------------
select t.spend_date,t.platform,ifnull(t3.total_amount,0) as total_amount ,ifnull(t3.total_users,0) as total_users from
(select distinct spend_date,'both' as platform from Spending 
union all 
select distinct spend_date,'mobile' as platform from Spending
union all
select distinct spend_date,'desktop' as platform from Spending)
t left join 
(select spend_date,platform,sum(amount) as `total_amount`,count(*) as `total_users` from (
    select spend_date,user_id,sum(amount) `amount`,
case when count(distinct platform) > 1 then 'both'
else platform end as platform
from Spending group by spend_date,user_id
) t2 group by spend_date,platform
) t3 on t.spend_date = t3.spend_date and t.platform = t3.platform;
--------------------------------------------
with s1 as (select * from Spending where platform='mobile'),--手机端
     s2 as (select * from Spending where platform='desktop'), --电脑端
     s3 as(select (case when s1.spend_date is not null then s1.spend_date else s2.spend_date end) spend_date,
                  (case when s1.platform is not null and s2.platform is null then s1.platform
                        when s2.platform is not null and s1.platform is null then s2.platform
                        else 'both' end) platform,
                   nvl(s1.amount,0)+nvl(s2.amount,0) amount 
           from s1 full join s2 on s1.user_id=s2.user_id and s1.spend_date=s2.spend_date)
select s3.spend_date,
       s3.platform,
       s3.amount,
       s4.total_users 
from s3 left join (select spend_date,platform,count(*) total_users from s3 group by spend_date,platform) s4
on  s3.spend_date=s4.spend_date and s3.platform=s4.platform 
order by s3.spend_date;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/864546.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring Boot集成checkstyle快速入门Demo

1.什么是checkstyle&#xff1f; CheckStyle是一个帮助程序员来遵守一直的编码规范的工具。默认&#xff0c;它支持google 和sun 的java style guide。而且它是高度可配置的&#xff0c;允许自定义编码规范&#xff0c;并可以对各种IDE&#xff08;eclipse、Intellij&#xff…

昇思MindSpore学习笔记2-01 LLM原理和实践 --基于 MindSpore 实现 BERT 对话情绪识别

摘要&#xff1a; 通过识别BERT对话情绪状态的实例&#xff0c;展现在昇思MindSpore AI框架中大语言模型的原理和实际使用方法、步骤。 一、环境配置 %%capture captured_output # 实验环境已经预装了mindspore2.2.14&#xff0c;如需更换mindspore版本&#xff0c;可更改下…

前端在for循环中使用Element-plus el-select中的@click.native动态传参

<el-table ref"table" :data"editTableVariables" cell-dblclick"handleRowDblClick" style"width: 100%" > <!-- el-table-column: 表格列组件&#xff0c;定义每列的展示内容和属性 --><el-table-column prop&q…

8种数据迁移工具

前言 最近有些小伙伴问我&#xff0c;ETL数据迁移工具该用哪些。 ETL(是Extract-Transform-Load的缩写&#xff0c;即数据抽取、转换、装载的过程)&#xff0c;对于企业应用来说&#xff0c;我们经常会遇到各种数据的处理、转换、迁移的场景。 今天特地给大家汇总了一些目前…

【云原生】服务网格(Istio)如何简化微服务通信

&#x1f407;明明跟你说过&#xff1a;个人主页 &#x1f3c5;个人专栏&#xff1a;《未来已来&#xff1a;云原生之旅》&#x1f3c5; &#x1f516;行路有良友&#xff0c;便是天堂&#x1f516; 目录 一、引言 1、微服务架构的兴起 2、Istio&#xff1a;服务网格的佼…

服务器测评

服务器测评 Linux测评口令是否存在空口令账户密码长度和密码定期更换密码复杂度本地登录失败处理功能相关参数超时锁定sshd服务相关端口是否已经打开不允许root账户远程登录查看SELinux状态审计查看Linux中正在运行的服务查看已添加的iptables规则查看文件和目录的权限设置是否…

大文件上传是怎么做的

1. 分片上传 1. 把需要上传的文件按照一定的规则&#xff0c;分割成相同大小的数据块 2. 初始化一个分片上传任务&#xff0c;返回本次分片上传的唯一标识 3. 按照一定的规则把各个数据块上传 4. 发送完成后&#xff0c;服务端会判断数据上传的完整性&#xff0c;如果完整&a…

【Python】Python环境搭建教学#保姆级教学#手把手带你安装——内附Python环境搭建安装包(Python、PyCharm(社区版)安装包)

Python环境搭建 导读一、初识Python1.1 Python的由来1.2 Python的用途1.3 Python的优缺点1.4 Python的前景&#xff08;钱景&#xff09; 二、Python环境搭建2.1 运行环境——Python安装2.2 开发环境——PyCharm安装2.3 项目创建2.4 基本配置2.4.1 主题配置2.4.2 背景图设置2.4…

Vue笔记-vue中使用JS创建的函数

主要是公司对前端要求不高&#xff0c;能解决问题就行了&#xff0c;前端不太熟&#xff0c;用js这种处理起来方便&#xff0c;在此记录下。 在src中创建一个api目录&#xff0c;新建custom.js export const getDivHeightByClass (className) > {let divElements docume…

容器之docker

Docker 是一个开源的平台&#xff0c;旨在使应用程序的开发、部署和运行更加轻松。它利用容器技术&#xff0c;将应用程序及其依赖环境打包在一起&#xff0c;以便于在任何环境中一致运行。 概述 Docker 通过提供轻量级的虚拟化解决方案&#xff0c;使得开发者可以轻松创建、…

.NET 调用API创建系统服务实现权限维持

01阅读须知 此文所节选自小报童《.NET 内网实战攻防》专栏&#xff0c;主要内容有.NET在各个内网渗透阶段与Windows系统交互的方式和技巧&#xff0c;对内网和后渗透感兴趣的朋友们可以订阅该电子报刊&#xff0c;解锁更多的报刊内容。 02基本介绍 本文内容部分节选自小报童…

达梦数据库的DBMS_STATS包

达梦数据库的DBMS_STATS包 基础信息 OS版本&#xff1a; Red Hat Enterprise Linux Server release 7.9 (Maipo) DB版本&#xff1a; DM Database Server 64 V8 DB Version: 0x7000c 03134284132-20240115-215128-20081达梦数据库&#xff08;DM Database&#xff09;提供了 D…

FreeRTOS开发五、任务状态切换以及空闲任务回收结束的任务

1、任务状态切换 任务创建的时候就会处于就绪状态ready&#xff0c;然后他马上就能够运行进入Running状态&#xff0c;运行中可以调用vTaskDelay进入阻塞状态&#xff0c;实际就是延时一小段时间&#xff0c;等待唤醒&#xff0c;当延时时间过去后就回到了就绪状态&#xff0…

【python学习】自定义函数的一些高级用法-1

在 Python 中&#xff0c;自定义函数除了基本的定义和调用外&#xff0c;还有一些高级用法&#xff0c;可以让函数更加灵活和强大。以下是一些自定义函数的高级用法示例&#xff1a; 1. 默认参数 函数定义时可以指定默认参数值&#xff0c;当调用函数时没有提供该参数的值时&…

深入理解Spring Boot与Spring Cloud的整合方式

深入理解Spring Boot与Spring Cloud的整合方式 大家好&#xff0c;我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编&#xff0c;也是冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01;今天我们将深入探讨Spring Boot与Spring Cloud的整合方式&#x…

pytorch-ResNet18简单复现

目录 1. ResNet block2. ResNet18网络结构3. 完整代码3.1 网络代码3.2 训练代码 1. ResNet block ResNet block有两个convolution和一个short cut层&#xff0c;如下图&#xff1a; 代码&#xff1a; class ResBlk(nn.Module):def __init__(self, ch_in, ch_out, stride):su…

Java学习 (六) 面向对象--this、继承、方法重写、super

一、this 关键字 1、this 演示 vi Person.java public class Person {String name;int age;//显示声明构造器public Person(String s , int i){name s;age i;}public void setAge(int age){age age;}}vi PersonTest.java public class PersonTest {public static void m…

第二十一章 函数(Python)

文章目录 前言一、定义函数二、函数参数三、参数类型四、函数返回值五、函数类型1、无参数&#xff0c;无返回值2、无参数&#xff0c;有返回值3、有参数&#xff0c;无返回值4、有参数&#xff0c;有返回值 六、函数的嵌套七、全局变量和局部变量1、局部变量2、全局变量 前言 …

了解 .NET 中的会话管理

在 Web 开发领域&#xff0c;跨多个请求维护状态是一个关键方面。HTTP 的无状态特性要求开发人员实现持久保存用户数据的机制。这就是会话发挥作用的地方。在本文中&#xff0c;我们将探讨什么是会话、它们在 .NET 中的工作方式&#xff0c;并提供实际示例来说明它们的用法。 …

set_source_files_properties QT_QML_SINGLETON_TYPE

目录 前言 QT_QML_SINGLETON_TYPE 属性 基本用法 示例 1. 创建一个基本的 CMake 项目 2. 编辑 CMakeLists.txt 3. 创建 main.cpp 4. 创建 MySingleton.qml 5. 创建 qml.qrc 6. 创建 main.qml 构建和运行项目 结论 前言 在使用 Qt 和 CMake 构建项目时&#xff0c;…