力扣第一道困难题《3. 无重复字符的最长子串》,c++

目录

方法一:

方法二: 

方法三: 

 方法四:

没有讲解,但给出了优秀题解


本题链接:4. 寻找两个正序数组的中位数 - 力扣(LeetCode)

 

话不多说,我们直接开始进行本题的思路解析;

首先我们看到这个题是肯定有一种暴力的硬解思路的,

方法一:

那就是将两个vector直接链接起来,然后再排序后,直接返回中间值,这个方法实现起来还是非常容易的,

代码如下:

class Solution {
public:double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2){size_t n = nums1.size();size_t m = nums2.size();if (m == 0){if (n % 2 == 0)return (nums1[n / 2 - 1] + nums1[n / 2]) / 2.0;elsereturn nums1[n / 2];}if (n == 0){if (m % 2 == 0)return (nums2[m / 2 - 1] + nums2[m / 2]) / 2.0;elsereturn nums2[m / 2];}size_t sum = m + n;int* nums = new int[m + n];int count = 0, i = 0, j = 0;while (count != sum){if (i == n){while (j != m)nums[count++] = nums2[j++];break;}if (j == m){while (i != n)nums[count++] = nums1[i++];break;}if (nums1[i] > nums2[j])nums[count++] = nums2[j++];elsenums[count++] = nums1[i++];}if (count % 2 == 0)return (nums[count / 2 - 1] + nums[count / 2]) / 2.0;elsereturn nums[count / 2];}
};int main()
{vector<int> s1;vector<int> s2;s1.push_back(1);s1.push_back(2);s2.push_back(3);s2.push_back(4);s2.push_back(5);s2.push_back(6);Solution s;cout << s.findMedianSortedArrays(s1, s2) << endl;return 0;
}

首先这个代码是可以编译成功的,

这里也有一个小技巧,如果这个代码是为0,那么证明编译时没有问题的,如果是非0,那么就是编译有问题,还需要修改代码。

但是会过来这个代码再力扣上是运行超时的,因为题目要求的时间复杂度是O(log (m+n))

但是我们的时间复杂度是O(m+n)

空间复杂度也是O(m+n)

方法二: 

其实我们的方法一是我们真正的将两个vector真正的链接在了一起,但实际上我们这一步可以省略,我们只需要挨个比较得到第k(假设中位数为第k位)个大的数是多少,那么其实就得到了中位数是多少。其实这一题方便了一点,题目给的数组是已有序的,所以我们挨个比较就行

开始我们写一个循环,这个循环我们的目的就是找到中位数所对应的下标是多少,如果找到了,那么就返回他的下标值,还没找到,那么就继续。但是这样来说,对偶数和奇数的分类会很麻烦。当其中一个数组遍历完后,还要分好几种情况进行另类判断另一个数组,这样想起来都麻烦。

然而要进行优化,那么我们就需要找到要进行优化的部分,那么就是考虑对偶与奇的情况不分开讨论,进行合并考虑,对于此情况我们可以在另定义两个变量left与right分别保存左操作数与右操作数。

假设合并的数组长度为len,那么无论对应偶还是奇,我们只需要遍历前  len/2+1  个数就可以(如果是偶数,我们需要知道第 len/2 len/2+1 个数,也是需要遍历 len/2+1 次。所以遍历的话,奇数和偶数都是 len/2+1 次。)

返回的left与right我们要做到如果是奇,那么只需要right,如果是偶,因为left不等于right,所以返回两个数的平均数;所以我们在for循环里应该保证依次循环过后left与right差一个位,所以我们要先在循环开始将right的值赋给left,后进行调整right。

然后写出大致框架:

如果nums1[i]<nums2[i],那么就将nums1[i]赋值给right,反之nums2[i];

我们在调整right的时候首先要考虑的就是nums是否越界,所以我需要先判断是否越界,同理考虑了nums1也需要考虑nums2;

所以填充完代码如下:

class Solution {
public:double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {int m = nums1.size();int n = nums2.size();int len = m + n;int left = -1, right = -1;int aStart = 0, bStart = 0;for (int i = 0; i <= len / 2; i++) {left = right;//调整rightif (aStart < m && (bStart >= n || nums1[aStart] < nums2[bStart])) {right = nums1[aStart++];}else {right = nums2[bStart++];}}if ((len % 2) == 0)return (left + right) / 2.0;elsereturn right;}
};
int main()
{vector<int> s1;vector<int> s2;s1.push_back(1);s1.push_back(2);s2.push_back(3);s2.push_back(4);s2.push_back(5);s2.push_back(6);Solution s;cout << s.findMedianSortedArrays(s1, s2) << endl;return 0;
}

运行起来是正确的,但依然在力扣上是不行的,还是运行超时;

时间复杂度是:遍历了m+n/2+1个数,但时间复杂度还是O(m+n);

方法三: 

 我第一眼看到这个题的时候,首先想到的就是二分查找,然后就想到了分别对两个数组进行二分,但是如果nums2全都大于num1那么这样就不行,然后我在看了别人的题解后然后理解了理解,就大为震撼,妙,但是题解是java的然后我自己又写了写修改了好几次终于写出来了。

方法二中,我们一次遍历就相当于去掉不可能是中位数的一个值,也就是一个一个排除。由于数列是有序的,其实我们完全可以一半儿一半儿的排除。假设我们要找第 k 小数,我们可以每次循环排除掉 k/2 个数。方法三其实与方法二同理,也是主要找到第k个数是多少。

下面我们看一个例子



 

此时3=3 

然后我们需要将两个数组的第  k/2   个数进行比较 ,然后将小的那个数组前k/2个数舍弃,对于方便处理,我们设定如果两个数相等,目前我们先优先删除第二个数组删除;(后面代码是是先有限舍弃第一个数组,这里是为了避开特殊情况)



此时1<5 

这次舍弃num1 的 k/2 个数;



此时2<5 

同理,继续舍弃nums1,舍弃 k/2 个数 



 这时候3<5;这时候3就为第6大的数,就是中位数。

这个方法是不是很妙呢?

然后我们就刷刷的写,然后突然就有一个案例不通过,那就是

如果按照上面的方法进行按照步骤进行梳理,那么就会发现第一步的时候就会卡住,因为第一步我么要进行舍弃的数的个数就已经超出了nums1的长度,直接会越界,那么这时候我们就需要进行特殊处理,如果舍弃个数大于剩余长度,那么就舍弃剩余长度。

 思路全部梳理完后,如果对递归熟悉的话,那么就完全可以写出来,思路难想,但是代码实现还是比较简单的。(特殊案例我也进行处理了,后面会进行特别分析)

class Solution {
public:double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {int n = nums1.size();int m = nums2.size();int left = (n + m + 1) / 2;int right = (n + m + 2) / 2;return (getKth(nums1, 0, n - 1, nums2, 0, m - 1, left) + getKth(nums1, 0, n - 1, nums2, 0, m - 1, right)) * 0.5;}int getKth(vector<int>& nums1, int start1, int end1, vector<int>& nums2, int start2, int end2, int k){//舍弃k/2个//结束条件k==1int len1 = end1 - start1 + 1;int len2 = end2 - start2 + 1;//让 len1 的长度小于 len2,这样就能保证如果有数组空了,一定是 len1 if (len1 > len2) return getKth(nums2, start2, end2, nums1, start1, end1, k);//还存在一种情况,就是k不为1的情况下,但len1已经等于0if (len1 == 0)       return nums2[start2 + k - 1];   if (k == 1)return min(nums1[start1], nums2[start2]);int i = start1 + min(len1, k / 2) - 1;int j = start2 + min(len2, k / 2) - 1;if (nums1[i] > nums2[j]){return getKth(nums1, start1, end1, nums2, j + 1, end2, k - (j - start2 + 1));}else{return getKth(nums1, i + 1, end1, nums2, start2, end2, k - (i - start1 + 1));}}
};

到此我们就出来了第一种在力扣上通过的代码;

然后进行特别分析



1:

这一步也是跟方法二同样的找到求中位数的操作数第left是第几个,right是第几个;与之不同的就是奇的情况下left=right,偶的情况下left+1=right;



 

2:

 此案例对应的也就是

 在求right的时候k=7;先舍弃k/2=3个

此时k=4;

然后再舍弃的话num1已经没有了但是k=4-2=2;还不为1;如果返回的还要再舍弃的话,就会报错越界;

所以要加特殊情况处理



 

3: 

这一步也是为了对应2,方便,如果没有这个,那么就有可能len2先空的情况,所以这一步避免了分类讨论; 

最后再展示一边代码:

class Solution {
public:double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {int n = nums1.size();int m = nums2.size();int left = (n + m + 1) / 2;int right = (n + m + 2) / 2;return (getKth(nums1, 0, n - 1, nums2, 0, m - 1, left) + getKth(nums1, 0, n - 1, nums2, 0, m - 1, right)) * 0.5;}int getKth(vector<int>& nums1, int start1, int end1, vector<int>& nums2, int start2, int end2, int k){//舍弃k/2个//结束条件k==1int len1 = end1 - start1 + 1;int len2 = end2 - start2 + 1;//让 len1 的长度小于 len2,这样就能保证如果有数组空了,一定是 len1 if (len1 > len2) return getKth(nums2, start2, end2, nums1, start1, end1, k);//还存在一种情况,就是k不为1的情况下,但len1已经等于0if (len1 == 0){return nums2[start2 + k - 1];}if (k == 1)return min(nums1[start1], nums2[start2]);int i = start1 + min(len1, k / 2) - 1;int j = start2 + min(len2, k / 2) - 1;if (nums1[i] > nums2[j]){return getKth(nums1, start1, end1, nums2, j + 1, end2, k - (j - start2 + 1));}else{return getKth(nums1, i + 1, end1, nums2, start2, end2, k - (i - start1 + 1));}}
};

运行成功

时间复杂度是O(log (m+n)) 。符合要求

 方法四:

但是这个方法三还是效率不是很高, 

其实还有一种更牛的方法,但本人看了看看不明白,运用到了统计学;本人还没有学统计学,能看明白一点,但是还是看清楚;

我看了题解有两种一个数官方一个是别的作者大佬写的;本人推荐大佬,官方直接给了题目解释,没有给知识补充;

4. 寻找两个正序数组的中位数 - 力扣(LeetCode)

为了方便这里给出了全部官方截图:



 最后这个题就已经完全讲解完了,第一次完全写完力扣困难题,总的来说是很难,但不至于一点思路也没有,而且写的过程中思考是很多的,还是比简单题写起来吃力。有能力还是多写困难题;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/863243.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

24/06/24(12.1117)指针进阶 ,冒泡和快排 习题为依托巩固概念(strlen,sizeof,字符串,数组,指针大小的区别)

回调函数 回过头来调用的函数 #include <stdio.h> #include <stdlib.h> int Find_Max(int arr[], int n){ int max_value arr[0]; for (int i 1; i < n; i){ if (max_value < arr[i]) max_value arr[i]; } return…

1,Windows-本地Linux 系统(WSL)

目录 第一步电脑设置 第二步安装Ubuntu 第三文件传递 开发人员可以在 Windows 计算机上同时访问 Windows 和 Linux 的强大功能。 通过适用于 Linux 的 Windows 子系统 (WSL)&#xff0c;开发人员可以安装 Linux 发行版&#xff08;例如 Ubuntu、OpenSUSE、Kali、Debian、Arc…

【子串】3. 无重复的最长子串

3. 无重复的最长子串 难度&#xff1a;中等难度 力扣地址&#xff1a;https://leetcode.cn/problems/longest-substring-without-repeating-characters/description/ 题目看起来简单&#xff0c;刷起来有好几个坑&#xff0c;特此记录一下&#xff0c;解法比官网的更加简单&…

[OtterCTF 2018]Play Time

还是这个程序 。。要找到游戏名字查看 进程 psscan pstree pslist 0x000000007d686b30 Rick And Morty 3820 2728 0x000000000b59a000 2018-08-04 19:32:55 UTC0000 0x000000007d7cb740 LunarMS.exe 708 2728 0x00000000731cb000 2018-08-04 19:27:39 UTC0000…

《昇思25天学习打卡营第12天 | 昇思MindSpore基于MindSpore的GPT2文本摘要》

12天 本节学习了基于MindSpore的GPT2文本摘要。 1.数据集加载与处理 1.1.数据集加载 1.2.数据预处理 2.模型构建 2.1构建GPT2ForSummarization模型 2.2动态学习率 3.模型训练 4.模型推理

支持纳管达梦数据库,命令存储支持对接Elasticsearch 8,JumpServer堡垒机v3.10.11 LTS版本发布

2024年6月24日&#xff0c;JumpServer开源堡垒机正式发布v3.10.11 LTS版本。JumpServer开源项目组将对v3.10 LTS版本提供长期的支持和优化&#xff0c;并定期迭代发布小版本。欢迎广大社区用户升级至v3.10 LTS最新版本&#xff0c;以获得更佳的使用体验。 在JumpServer v3.10.…

Github Page 使用手册(保姆级教程!)

搭建个人网站&#xff1f;没有服务器&#xff1f;那不如尝试一下 Github Page &#xff01; 最近我正好在搭建个人网站&#xff0c;于是就写一篇博客来详细介绍 Github Page 的使用、部署方式吧&#xff01; 一、进入 Github 访问&#xff1a;github.com 如果你没有 github…

Linux中彩色打印

看之前关注下公众号呗 第1部分&#xff1a;引言 1.1 Python在文本处理中的重要性 Python作为一种广泛使用的高级编程语言&#xff0c;以其简洁的语法和强大的功能在文本处理领域占有一席之地。无论是数据清洗、自动化脚本编写&#xff0c;还是复杂的文本分析&#xff0c;Py…

RHCE四---web服务器的高级优化方案

一、Web服务器&#xff08;2&#xff09; 基于https协议的静态网站 概念解释 HTTPS&#xff08;全称&#xff1a;Hyper Text Transfer Protocol over Secure Socket Layer 或 Hypertext TransferProtocol Secure&#xff0c;超文本传输安全协议&#xff09;&#xff0c;是以…

在Ubuntu 18.04.6 LTS 交叉编译生成Windows 11下的gdb 8.1.1

1. 安装mingw sudo apt-get install mingw-w64 2. 下载 gdb 8.1.1源码 https://ftp.gnu.org/gnu/gdb/gdb-8.1.1.tar.gz 解压命令 tar -xf gdb-8.1.1.tar.gz 进入目录,创建build目录: hq@hq:~/gdb-8.1.1/build$ 执行配置 ../confi

java实现图片添加水印

文章目录 前言一、工具类WatermarkUtil二、工具类介绍2.1 图片来源类型2.2 水印类型2.3 读取本地图片2.4 读取网络图片2.5 水印处理2.6 添加水印 三、测试添加水印总结 前言 给图片添加水印是一个很常见的需求&#xff0c;一般是用来防盗用。比如我们csdn上面写的文章中&#…

【Vue】单向和双向数据绑定

在 Vue.js 中&#xff0c;数据绑定可以分为单向数据绑定和双向数据绑定两种类型。 单向数据绑定 单向数据绑定是指数据从模型流向视图&#xff0c;即数据的变化会自动反映到视图中&#xff0c;但视图中的变化不会自动反映回模型。Vue.js 中的单向数据绑定主要通过以下方式实现…

Linux的fwrite函数

函数原型: 向文件fp中写入writeBuff里面的内容 int fwrite(void*buffer&#xff0c;intsize&#xff0c;intcount&#xff0c;FILE*fp) /* * description : 对已打开的流进行写入数据块 * param ‐ ptr &#xff1a;指向 数据块的指针 * param ‐ size &#xff1a;指定…

无人机赋能工程测绘

勘察设计 业务挑战 采集效率低导致工程周期延长&#xff0c;难以满足及时交付的需求 外业工作量大&#xff0c;人员、时间、设备投入成本高 测绘成果单一&#xff0c;仅限于数字线划图&#xff0c;无法提供可视化模型 无人机优势 快速构建二三维模型&#xff0c;提供丰富…

VUE-CLI脚手架项目的初步创建与配置

目录 1&#xff0c;首先创建一个VUE项目&#xff0c;注意选择版本为 2.6.10 2&#xff0c;打开APP.vue文件&#xff0c;并且删除APP.vue中多余的代码 3&#xff0c;创建index.vue文件 4&#xff0c;在此文件中写入如下图片中的代码来初步创建页面 5&#xff0c;创建router…

pandas数据分析(1)

pandas&#xff0c;即Python数据分析库&#xff08;Python data analysis library&#xff09; DataFrame和Series DataFrame&#xff08;数据帧&#xff09;和Series&#xff08;序列&#xff09;是pandas的核心数据结构。DataFrame的主要组件包含索引、列、数据。DataFrame和…

“论模型驱动架构设计方法及其应用”,软考高级论文,系统架构设计师论文

论文真题 模型驱动架构设计是一种用于应用系统开发的软件设计方法&#xff0c;以模型构造、模型转换和精化为核心&#xff0c;提供了一套软件设计的指导规范。在模型驱动架构环境下&#xff0c;通过创建出机器可读和高度抽象的模型实现对不同问题域的描述&#xff0c;这些模型…

基于QT开发的气体成分检测数据记录软件

1、软件概述 气体成分检测数据记录软件用于实现多种气体分析仪及相关设备实时数据的获取、存储和传送。目前支持的设备主要有气体分析仪、多通道进样阀箱、冷阱处理系统和气体采样处理系统。   气体成分检测数据记录软件可以根据实际应用需要进行配置&#xff0c;以实现不同应…

算法 —— 双指针

目录 移动零 复写零 快乐数 盛最多水的容器 有效三角形的个数 查找总价格为目标值的两个商品 三数之和 四数之和 移动零 下图以样例1为例&#xff0c;看下图如何做到保证非零元素相对顺序前提下&#xff0c;移动零元素。 代码实现如下&#xff1a; class Solution {…

MySQL高级-SQL优化- order by 优化(尽量使用覆盖索引、注意联合索引创建的规则、增大排序缓冲区大小)

文章目录 0、order by优化原则1、Using filesort2、Using index3、连接数据库4、查看索引5、删除索引6、按照年龄进行排序7、执行计划 order by age8、执行计划 order by age,phone9、创建联合索引 (age,phone)10、再次执行计划 order by age11、再次执行计划 order by age,pho…