6.26.4.3 条件生成对抗和卷积网络用于x射线乳房质量分割和形状分类

        一种基于条件生成对抗网络(conditional Generative Adversarial Networks, cGAN)的乳房肿块分割方法。假设cGAN结构非常适合准确地勾勒出质量区域,特别是当训练数据有限时。生成网络学习肿瘤的内在特征,而对抗网络强制分割与基础事实相似。从公开DDSM数据集和我们内部私有数据集提取的数十个恶性肿瘤进行的实验证实了我们的假设,骰子系数和Jaccard指数非常高(分别> 94%和> 89%),优于其他最先进的方法获得的分数。此外,为了检测分割肿瘤的重要形态学特征,还设计了一个特定的卷积神经网络(CNN),将分割的肿瘤区域分为四种类型(不规则、小叶、椭圆形和圆形),在DDSM数据集上的总体准确率约为72%。

1. 介绍

        乳房x线摄影筛查是早期发现乳腺癌最可靠的方法。在各种类型的乳房异常中,如微钙化或结构扭曲,乳房肿块是最重要的发现,因为它们可能提示恶性肿瘤的存在。然而,由于肿块与周围健康组织的高可变性、低对比度和高相似性以及低信噪比,定位肿块和识别肿块边界是一项困难的任务。 

        CAD系统被强烈推荐用于帮助放射科医生检测肿块,勾勒出它们的边界(即肿块分割),以及提出它们的形态特征,如形状类型(不规则、分叶状、椭圆形和圆形)和边缘类型(界限清晰、模糊、定义不清、有毛刺)。最近的研究表明,肿块特征与分子亚型之间存在一些松散的关联,分子亚型(如Luminal-A、Luminal-B、HER-2和Basal-like)是制定最佳肿瘤治疗方案的关键。 提出了一个基于条件生成对抗网络(cGAN)的乳腺肿块分割新方法。从肿块的二值掩码中预测肿块的形状类型(不规则、分叶状、椭圆形和圆形)。本文还研究了肿块形状与分子亚型之间的相关性

2. 相关工作

        提出许多方法来解决乳房质量分割问题,包括基于阈值分割、迭代像素分类、区域生长、区域聚类、边缘检测、模板匹配和随机松弛等技术[1,9]。 

        对于分割问题,一些建议依赖于经典的统计模型,如结构化支持向量机,使用深度信念网络或CNN特征作为其潜在函数[10]。另一方面,也可以基于全卷积网络(Fully Convolutional Network, FCN)方法进行图像分割[11]。然而,经典的FCN管道不能准确地保留对象的边界。为了克服这一缺点,FCN网络与考虑像素位置的CRF层相连接,以加强输出分割的紧凑性[12]。 

3. 提出的模型

3.1 系统概述

        图1表示了所提出的用于大规模分割的cGAN网络的训练阶段(左)以及完整的预测工作流(右),由两个阶段定义。第一阶段使用训练的cGAN的生成器部分自动获得一个二进制掩码,该掩码选择应该对应于乳腺肿块区域的像素(白色),而忽略对应于健康组织的像素(黑色)。输入图像是包含ROI质量的乳房x光片的平方裁剪。将输入重塑为256×256像素大小,并将每个像素的值缩放为[0,1]范围。为了去除噪声,用0.5标准差的高斯滤波对图像进行了正则化。工作流的第二阶段使用经过训练的常规CNN将得到的二值掩模分为四类质量形状中的一类,即不规则、小叶、椭圆形和圆形。

3.2 肿块分割模型(cGAN)

假设[8]中提出的cGAN结构对于分割来说是完美的,主要有两个原因:

  • cGAN的生成器网络是由编码器和解码器两个网络组成的FCN网络。编码器可以学习肿块和正常乳腺实质的内在特征(灰度、纹理、梯度、边缘、形状等),反过来,解码器可以学习如何根据两个输出类(肿块/正常)的输入特征标记二进制掩码。

  • cGAN的判别网络将生成的二值掩码与相应的真值进行比较,使它们尽可能地相似。因此,在生成器的损失计算中加入对抗分数可以增强其提供有效分割的能力。 

        生成器/判别器网络的组合允许用很少的训练样本进行鲁棒学习。由于生成和判别网络都是通过观察输入图像来调节的,因此产生的分割是对输入像素的函数。否则,常规GAN(无条件)将仅仅从随机噪声中推断分割,这显然不会将x射线聚集的质量外观与输出的二进制掩模绑定在一起。


x 表示一幅肿块ROI图像,y 表示相应的分割,z 为随机变量, G(x,z)为预测掩码,\|y-G(x,z)\|_1 是真实值与预测掩码之间的L1归一化距离,\lambda 是经验加权因子,D(x,G(x,z))是判别器的输出分数,则生成器的损失定义为:

\ell_{Gen}(G,D)=E_{x,y,z}\big(-log(D(x,G(x,z)))\big)+\lambda E_{x,y,z}\big(\|y-G(x,z)\|_{1}\big),\quad(1)

如果只使用L1项,由于距离度量平均了所有像素差,因此得到的二值掩模会被模糊。因此,包括对抗项允许生成器学习如何在细粒度细节(高频)上转换输入图像,从而产生清晰而逼真的二进制掩模。 

\ell_{Dis}(G,D)=E_{x,y}\Big(-log(D(x,y))\Big)+E_{x,y,z}\Big(-log(1-D(x,G(x,z)))\Big),\quad(2) 

因此,优化器将拟合鉴别器网络,以最大化真实掩码预测(通过最小化-log(D(x,y)))和最小化生成的掩码预测(通过最小化-log(1-D(x,G(x,z)))。 

3.3 形状分类模型(CNN)

        在这个阶段,选择了CNN方法而不是其他提取形状特征的经典方法(例如HOG,形状上下文),主要是因为深度神经网络在物体识别和分割任务中取得了成功[14]。然而,这一阶段的输入图像(二值掩模)并没有呈现像素值的复杂分布,只是形态结构,因此假设一个相当简单的CNN(即两个卷积层加上两个完全连接层)将足以学习四种质量形状的泛化。 

4. 实验

4.1 数据集

DDSM数据集:这是一个公开的数据库,包括大约2500个乳腺良性和恶性肿瘤肿块,具有不同形状类别的基础事实。从恶性病例中,我们选择567张乳腺x线照片(不规则、小叶、椭圆形和圆形分别为330张、108张、90张和39张)。我们已经使用这个数据集来训练分割和形状分类模型。

Reus医院数据集:包含194个恶性肿块,分布在四种分子亚型乳腺癌中:64个Luminal-A, 59个Luminal-B, 34个Her-2和37个Basal-like。该数据集用于测试分割模型,并对形状质量和分子亚型分布进行分析。

4.2 实验结果

        在第一阶段,训练了两个版本的cGAN架构,Auto-Encoder(即没有跳过连接)和U-Net(即有跳过连接),并将它们与三种模型进行比较:FCN [11], U-Net[17]和CRFCNN[10]为我们的数据重新训练。对于所有的实验,DDSM数据集被分成训练、验证和测试三个部分,分别占70%、15%和15%。然后,整个内部私有数据集样本被用于测试(见表1)。分割后,应用了后处理形态学滤波(即侵蚀和膨胀),从所有比较方法生成的二进制掩模中去除伪影和小白色区域。 

        cGAN-Unet在DDSM测试样本上提供了所有计算指标的最佳结果,具有非常显著的准确性,Dice和Jaccard分数(分别约为97%,94%和89%)。然而,在内部私有数据集上,cGAN-AutoEnc在Dice, Jaccard和Sensitivity方面比cGAN-Unet产生更好的结果(分别为+2%,+4%和+12%),这表明cGAN-AutoEnc已经学习了更广义的肿瘤特征表示,因为它在未用于训练的数据集上表现更好。虽然cGAN-AutoEnc的准确率(94.81%)并不高于FCN(94.84%)和cGAN-Unet(95.55%),但前者的真阳性率(97.26%)非常可观,其中Dice和Jaccard的真阳性率最高(分别为88.94%和80.08%)。FCN模型获得了最高的真阴性率(99.05%),但其灵敏度(80.02%)低于两种cGAN模型,它比cGAN模型遗漏了更多的真实肿瘤区域。另一方面,尽管U-Net和FCN方法在DDSM数据集上表现相对较好,但U-Net和CRFCNN在私有数据集上的灵敏度和特异性都较差。

        从DDSM数据集中选择的80%的图像用于训练我们的分类器,使用其相应的质量形状标签的基础真值,使用分层的10次交叉验证,每一次50次epoch。剩下的20%的图像用于测试,总体精度约为72%。

        肿瘤形态对预测乳腺癌分子亚型有重要作用[18]。因此,计算了内部私有数据集的乳腺癌分子亚型类别与四种形状类别之间的相关性。如表2所示,Luminal-A和-B组大多属于不规则和小叶形状类。此外,一些与Luminal-A相关的图像被分配为椭圆形。反过来,椭圆形和圆形肿块指示Her-2和基底样群,以及一些与基底样相关的图像中等程度地分配给小叶类。 

5. 总结

        提出了两个版本的cGAN网络用于乳房质量分割:cGAN- autoenc和cGAN- unet。两种版本的生成网络分别与FCN和U-Net网络结构相似。实验结果证实,在公开的DDSM数据集上,对抗网络的加入显著提高了分割性能,Dice系数和Jaccard指数分别提高了6%和9%。反过来,在内部私有数据集上,这两个指标分别提高了+2%和+2%。总的来说,CRFCNN提供的测试结果更差。此外,还证明了一个相当简单的CNN架构足以从它们的二进制掩模中区分质量形状的形状相关类。未来的工作旨在通过使用大型数据集和使用鲁棒损失函数(如负对数似然和骰子损失函数)来提高所提出系统的收敛性和准确性,从而提高总体精度(72%)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/862730.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【语言模型】深入探索语言模型中的神经网络算法:原理、特点与应用

随着人工智能技术的飞速发展,神经网络算法在语言模型中的应用日益广泛,为自然语言处理领域带来了革命性的变革。本文将深入探讨当前语言模型中常用的几种神经网络算法,包括全连接神经网络、卷积神经网络、循环神经网络、长短期记忆网络、门控…

python向类中添加新的方法

python向类中添加新的方法 1. 直接在类定义中添加方法 如果你正在定义类,你可以直接在类定义中添加新的方法: class MyClass:def method1(self):print("这是方法1")# 向类中添加新的方法def new_method(self):print("这是新添加的方法&…

【最新鸿蒙应用开发】——ArkTS与JavaScript区别

1. 箭头函数和普通函数的区别 箭头函数(Arrow Functions)和普通函数(Function Declarations/Expressions)在 JavaScript 中有一些关键区别,主要体现在 this 指向、语法、构造函数能力等方面。以下是它们之间的主要区别…

PostgreSQL的系统视图pg_stat_bgwriter

PostgreSQL的系统视图pg_stat_bgwriter 在 PostgreSQL 数据库中,pg_stat_bgwriter 视图提供了关于后台写进程(Background Writer process)的统计信息。后台写进程的主要任务是将脏数据(dirty data)从共享缓冲区写入磁…

五线谱与简谱有什么区别 五线谱简谱混排怎么打 吉他谱软件哪个好

五线谱与简谱作为音乐记谱领域的两大主流系统,各自承载着深厚的历史渊源与独特的表现力,并在全球范围内被不同程度地接受和应用。尽管两者都是为了记录音乐作品中的音高和节奏信息,但其内在机制、适用范围以及学习曲线存在显著差别。下面我们…

何时以及如何使用try、catch和throw关键字

在编程中,try、catch 和 throw 关键字通常用于处理异常(exceptions),这是一种在程序运行时发生的问题,可能导致程序终止或产生不正确的结果。以下是这些关键字何时以及如何使用的基本概述: 何时使用 当代…

linux查看二进制文件

在Linux中,查看二进制文件可以使用hexdump或xxd命令。 例如,要查看一个名为example.bin的二进制文件的内容,可以使用以下命令之一: 使用hexdump: bash hexdump -C example.bin使用xxd: bash xxd exam…

版本控制系统:Git

基本操作 ctrl上行键:上次代码 本地仓库:Git init 新建文件:touch xxxx.xxx 查看状态:Git status 文件从工作区——暂存区:Git add ./文件名(.是通配符代表所有) 暂存区——仓库:Git commit -m &…

Spring企业开发核心框架-上

一、框架前言 1、总体技术体系 单一架构 一个项目,一个工程,导出为一个war包,在一个Tomcat上运行。也叫all in one. 单一架构,项目主要应用技术框架为:Spring,SpringMVC,Mybatis等 分布式架构…

vue-cil搭建项目

目录 一、使用 HbuilderX 快速搭建一个 vue-cli 项目 1.需要的环境——Node.js 2.搭建Vue-cil项目 二、组件路由 1.安装vue-router 2.创建router目录 3.使用路由 4.在main.js中配置路由 vue-cli 官方提供的一个脚手架,用于快速生成一个 vue 的项目模板;…

几个有意思 Python 通用命令行工具

几个 Python 通用命令行工具。 命令用途python -m http.server启动一个简单的web服务器python -m webbrowser打开你的网页浏览器python -m json.tool格式化JSON数据,使其美观python -m calendar显示命令行日历 快速启动一个Web服务 http.server 将http.server模块…

数字信号处理——专栏说明篇

为什么要开这个学习专栏? 没有过高技术,没有强大背景,如果可以,请你听听我的故事。 22岁的我,在经历了72%的迷茫且无助的大学生活后,我,一个平平无奇的在校学生,终于通过自我救赎&…

VsCode:配置TypeScript开发环境

一、前提 电脑已经安装了npm 何如安装npm,请点击查看Node.js、npm常用命令、安装多个node版本 提醒:下文讲解操作是在mac 系统进行的,TypeScript简称:ts 二、安装TypeScript 在终端里执行命令:npm install -g typescr…

【Linux】部署 GitLab 服务

1、配置实验环境 安装git apt install git 安装docker apt install docker 安装tree apt install tree 2、安装 Gitlab 下载官方库与安装包 下载官方库的安装脚本 curl https://packages.gitlab.com/install/repositories/gitlab/gitlab-ee/script.deb.sh | sudo bas…

1panel 搭建多个网站

1panel 部署多个网站,另外的域名,或无域端口搭建方法。 当我们已经部署好一个网站后,想再部署一个网站在我们的服务器上时, 步骤:(另外的域名,部署在同一个服务器方法) 运行环境里…

六、资产安全—信息分级资产管理与隐私保护(CISSP)

目录 1.信息分级 2.信息分级方法 3.责任的层级 4.资产管理 5.隐私数据管理角色 6.数据安全控制 7.数据保护方案 8.使用安全基线 六、资产安全—数据管理(CISSP): 五、身份与访问管理—身份管理和访问控制管理(CISSP): 1.信息分级 信息分级举列: 2.信息分级方…

K8S 角色/组件及部署方式的简单概述

1.宏观架构图 2.角色详情 2.1 Master(Controller Plane) 早期是叫 Master 节点,后期改名为 Controller Plane,负责整个集群的控制和管理 Master 不会干活的(当然你让它干也是会干的,涉及到污点容忍),而是起到访问入口&#xff…

使用docker搭建squid和ss5

docker run -d --name squid-container -e TZAsia/Shanghai -p 自定义端口并记得开放:3128 ubuntu/squid docker exec -it squid-container /bin/bash apt update && apt install vim # 修改 http_port 3128 为 http_port 0.0.0.0:3128 # 修改 http_access deny all 为…

天池大赛Higress插件官方demo详细部署+调试

天池大赛Higress插件官方demo详细部署调试 契机 ⚙ 使用Higress AI网关优化AI调用成本。就是基于向量召回相似问题的缓存,降低LLM API调用成本。就是开发一个网关插件做QA缓存嘛。前文已经成功复现了hello-world插件,这次结合官方提供的AI-Cache插件自…

SecureBoost:一种无损的联邦学习框架

SecureBoost:一种无损的联邦学习框架 文章目录 SecureBoost:一种无损的联邦学习框架1 引言2 预备知识与相关工作3 问题描述4 联邦学习与SecureBoost5 联邦推理6 无损属性的理论分析7 安全讨论8 实验9 结论 摘要——用户隐私保护是机器学习中的一个重要问…