系列文章目录
文章目录
- 系列文章目录
- 前言
- 一、本文要点
- 二、开发环境
- 三、原项目
- 四、修改项目
- 五、测试一下
- 五、小结
前言
本插件稳定运行上百个kafka项目,每天处理上亿级的数据的精简小插件,快速上手。
<dependency><groupId>io.github.vipjoey</groupId><artifactId>multi-kafka-starter</artifactId><version>最新版本号</version>
</dependency>
例如下面这样简单的配置就完成SpringBoot和kafka的整合,我们只需要关心com.mmc.multi.kafka.starter.OneProcessor
和com.mmc.multi.kafka.starter.TwoProcessor
这两个Service的代码开发。
## topic1的kafka配置
spring.kafka.one.enabled=true
spring.kafka.one.consumer.bootstrapServers=${spring.embedded.kafka.brokers}
spring.kafka.one.topic=mmc-topic-one
spring.kafka.one.group-id=group-consumer-one
spring.kafka.one.processor=com.mmc.multi.kafka.starter.OneProcessor // 业务处理类名称
spring.kafka.one.consumer.auto-offset-reset=latest
spring.kafka.one.consumer.max-poll-records=10
spring.kafka.one.consumer.value-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.one.consumer.key-deserializer=org.apache.kafka.common.serialization.StringDeserializer## topic2的kafka配置
spring.kafka.two.enabled=true
spring.kafka.two.consumer.bootstrapServers=${spring.embedded.kafka.brokers}
spring.kafka.two.topic=mmc-topic-two
spring.kafka.two.group-id=group-consumer-two
spring.kafka.two.processor=com.mmc.multi.kafka.starter.TwoProcessor // 业务处理类名称
spring.kafka.two.consumer.auto-offset-reset=latest
spring.kafka.two.consumer.max-poll-records=10
spring.kafka.two.consumer.value-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.two.consumer.key-deserializer=org.apache.kafka.common.serialization.StringDeserializer## pb 消息消费者
spring.kafka.pb.enabled=true
spring.kafka.pb.consumer.bootstrapServers=${spring.embedded.kafka.brokers}
spring.kafka.pb.topic=mmc-topic-pb
spring.kafka.pb.group-id=group-consumer-pb
spring.kafka.pb.processor=pbProcessor
spring.kafka.pb.consumer.auto-offset-reset=latest
spring.kafka.pb.consumer.max-poll-records=10
spring.kafka.pb.consumer.key-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.pb.consumer.value-deserializer=org.apache.kafka.common.serialization.ByteArrayDeserializer## kafka消息生产者
spring.kafka.four.enabled=true
spring.kafka.four.producer.name=fourKafkaSender
spring.kafka.four.producer.bootstrap-servers=${spring.embedded.kafka.brokers}
spring.kafka.four.producer.key-serializer=org.apache.kafka.common.serialization.StringSerializer
spring.kafka.four.producer.value-serializer=org.apache.kafka.common.serialization.StringSerializer
国籍惯例,先上源码:Github源码
一、本文要点
本文将介绍通过封装一个starter,来实现多kafka数据源的配置,通过通过源码,可以学习以下特性。系列文章完整目录
- SpringBoot 整合多个kafka数据源
- SpringBoot 批量消费kafka消息
- SpringBoot 优雅地启动或停止消费kafka
- SpringBoot kafka本地单元测试(免集群)
- SpringBoot 利用map注入多份配置
- SpringBoot BeanPostProcessor 后置处理器使用方式
- SpringBoot 将自定义类注册到IOC容器
- SpringBoot 注入bean到自定义类成员变量
- Springboot 取消限定符
- SpringBoot 支持消费protobuf类型的kafka消息
- SpringBoot Aware设计模式
- SpringBoot 获取kafka消息中的topic、offset、partition、header等参数
- SpringBoot 使用任意生产者发送kafka消息
- SpringBoot 配置任意数量的kafka生产者
二、开发环境
- jdk 1.8
- maven 3.6.2
- springboot 2.4.3
- kafka-client 2.6.6
- idea 2020
三、原项目
1、接前文,我们基本完成了kafka consumer常用的特性开发,有小伙伴问,我们该如何配置多个数据源生产者,想consumer一样简单,发送kafka消息呢?
## 1.配置
spring.kafka.four.enabled=true
spring.kafka.four.producer.name=fourKafkaSender
spring.kafka.four.producer.bootstrap-servers=${spring.embedded.kafka.brokers}
spring.kafka.four.producer.key-serializer=org.apache.kafka.common.serialization.StringSerializer
spring.kafka.four.producer.value-serializer=org.apache.kafka.common.serialization.StringSerializer## 2.引用
@Resource(name = "fourKafkaSender")
private MmcKafkaMultiSender mmcKafkaMultiSender;## 3.使用
mmcKafkaMultiSender.sendStringMessage(topicOne, "aaa", json);
答案是可以的、但我们要升级和优化一下。
四、修改项目
1、修改内部类MmcKafkaProperties
类,增加生产者相关的配置。
@EqualsAndHashCode(callSuper = true)@Datapublic static class Producer extends KafkaProperties.Producer {/*** 是否启用.*/private boolean enabled = true;/*** 生产者名称,如果有设置则会覆盖默认的xxxKakfkaSender名称.*/private String name;}/*** 生产者.*/private final Producer producer = new Producer();/*** Create an initial map of producer properties from the state of this instance.* <p>* This allows you to add additional properties, if necessary, and override the* default kafkaProducerFactory bean.** @return the producer properties initialized with the customizations defined on this* instance*/Map<String, Object> buildProducerProperties() {return new HashMap<>(this.producer.buildProperties());}
2、新增MmcKafkaSender
接口,作为发送Kafka消息的唯一约束。
public interface MmcKafkaSender {/*** 发送kafka消息.** @param topic topic名称* @param partitionKey 消息分区键* @param message 具体消息*/void sendStringMessage(String topic, String partitionKey, String message);/*** 发送kafka消息.** @param topic topic名称* @param partitionKey 消息分区键* @param message 具体消息*/void sendProtobufMessage(String topic, String partitionKey, byte[] message);
}
3、新增MmcKafkaOutputContainer
容器类,用于存储所有生产者,方便统一管理;
@Getter
@Slf4j
public class MmcKafkaOutputContainer {/*** 存放所有生产者.*/private final Map<String, MmcKafkaSender> outputs;/*** 构造函数.*/public MmcKafkaOutputContainer(Map<String, MmcKafkaSender> outputs) {this.outputs = outputs;}}
4、新增MmcKafkaSingleSender
实现类,用于真实发送Kafka消息;
public class MmcKafkaSingleSender implements MmcKafkaSender {private final KafkaTemplate<String, Object> template;public MmcKafkaSingleSender(KafkaTemplate<String, Object> template) {this.template = template;}@Overridepublic void sendStringMessage(String topic, String partitionKey, String message) {template.send(topic, partitionKey, message);}@Overridepublic void sendProtobufMessage(String topic, String partitionKey, byte[] message) {template.send(topic, partitionKey, message);}}
5、修改MmcMultiProducerAutoConfiguration
配置类,遍历所有配置,组装并生成MmcKafkaSingleSender
,并注册到IOC容器;
@Slf4j
@Configuration
@EnableConfigurationProperties(MmcMultiKafkaProperties.class)
@ConditionalOnProperty(prefix = "spring.kafka", value = "enabled", matchIfMissing = true)
public class MmcMultiProducerAutoConfiguration implements BeanFactoryAware {private DefaultListableBeanFactory beanDefinitionRegistry;@Resourceprivate MmcMultiKafkaProperties mmcMultiKafkaProperties;@Beanpublic MmcKafkaOutputContainer mmcKafkaOutputContainer() {// 初始化一个存储所有生产者的哈希映射Map<String, MmcKafkaSender> outputs = new HashMap<>();// 获取所有的Kafka配置信息Map<String, MmcMultiKafkaProperties.MmcKafkaProperties> kafkas = mmcMultiKafkaProperties.getKafka();// 逐个遍历,并生成producerfor (Map.Entry<String, MmcMultiKafkaProperties.MmcKafkaProperties> entry : kafkas.entrySet()) {// 唯一生产者名称String name = entry.getKey();// 生产者配置MmcMultiKafkaProperties.MmcKafkaProperties properties = entry.getValue();// 是否开启if (properties.isEnabled()&& properties.getProducer().isEnabled()&& CommonUtil.isNotEmpty(properties.getProducer().getBootstrapServers())) {// bean名称String beanName = Optional.ofNullable(properties.getProducer().getName()).orElse(name + "KafkaSender");KafkaTemplate<String, Object> template = mmcdKafkaTemplate(properties);// 创建实例MmcKafkaSender sender = new MmcKafkaSingleSender(template);outputs.put(beanName, sender);// 注册到IOCbeanDefinitionRegistry.registerSingleton(beanName, sender);}}return new MmcKafkaOutputContainer(outputs);}private KafkaTemplate<String, Object> mmcdKafkaTemplate(MmcMultiKafkaProperties.MmcKafkaProperties producer) {return new KafkaTemplate<>(baseKafkaProducerFactory(producer));}private ProducerFactory<String, Object> baseKafkaProducerFactory(MmcMultiKafkaProperties.MmcKafkaProperties producer) {return new DefaultKafkaProducerFactory<>(producer.buildProducerProperties());}@Overridepublic void setBeanFactory(BeanFactory beanFactory) throws BeansException {this.beanDefinitionRegistry = (DefaultListableBeanFactory) beanFactory;}
}
五、测试一下
1、引入kafka测试需要的jar。参考文章:kafka单元测试
<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-test</artifactId><scope>test</scope></dependency><dependency><groupId>org.springframework.kafka</groupId><artifactId>spring-kafka-test</artifactId><scope>test</scope></dependency><dependency><groupId>com.google.protobuf</groupId><artifactId>protobuf-java</artifactId><version>3.18.0</version><scope>test</scope></dependency><dependency><groupId>com.google.protobuf</groupId><artifactId>protobuf-java-util</artifactId><version>3.18.0</version><scope>test</scope></dependency>
2、消费者配置保持不变,增加生产者配置。
## json消息消费者
spring.kafka.one.enabled=true
spring.kafka.one.consumer.bootstrapServers=${spring.embedded.kafka.brokers}
spring.kafka.one.topic=mmc-topic-one
spring.kafka.one.group-id=group-consumer-one
spring.kafka.one.processor=oneProcessor
spring.kafka.one.duplicate=false
spring.kafka.one.snakeCase=false
spring.kafka.one.consumer.auto-offset-reset=latest
spring.kafka.one.consumer.max-poll-records=10
spring.kafka.one.consumer.value-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.one.consumer.key-deserializer=org.apache.kafka.common.serialization.StringDeserializer
spring.kafka.one.container.threshold=2
spring.kafka.one.container.rate=1000
spring.kafka.one.container.parallelism=8## json消息生产者
spring.kafka.four.enabled=true
spring.kafka.four.producer.name=fourKafkaSender
spring.kafka.four.producer.bootstrap-servers=${spring.embedded.kafka.brokers}
spring.kafka.four.producer.key-serializer=org.apache.kafka.common.serialization.StringSerializer
spring.kafka.four.producer.value-serializer=org.apache.kafka.common.serialization.StringSerializer
3、编写测试类。
@Slf4j
@ActiveProfiles("dev")
@ExtendWith(SpringExtension.class)
@SpringBootTest(classes = {MmcMultiProducerAutoConfiguration.class, MmcMultiConsumerAutoConfiguration.class,DemoService.class, OneProcessor.class})
@TestPropertySource(value = "classpath:application-string.properties")
@DirtiesContext
@EmbeddedKafka(partitions = 1, brokerProperties = {"listeners=PLAINTEXT://localhost:9092", "port=9092"},topics = {"${spring.kafka.one.topic}"})
class KafkaStringMessageTest {@Value("${spring.kafka.one.topic}")private String topicOne;@Value("${spring.kafka.two.topic}")private String topicTwo;@Resource(name = "fourKafkaSender")private MmcKafkaSingleSender mmcKafkaSingleSender;@Testvoid testDealMessage() throws Exception {Thread.sleep(2 * 1000);// 模拟生产数据produceMessage();Thread.sleep(10 * 1000);}void produceMessage() {for (int i = 0; i < 10; i++) {DemoMsg msg = new DemoMsg();msg.setRoutekey("routekey" + i);msg.setName("name" + i);msg.setTimestamp(System.currentTimeMillis());String json = JsonUtil.toJsonStr(msg);mmcKafkaSingleSender.sendStringMessage(topicOne, "aaa", json);}}
}
5、运行一下,测试通过,可以看到能正常发送消息和消费。
五、小结
将本项目代码构建成starter,就可以大大提升我们开发效率,我们只需要关心业务代码的开发,github项目源码:轻触这里。如果对你有用可以打个星星哦。下一篇,升级本starter,在kafka单分区下实现十万级消费处理速度。
《搭建大型分布式服务(三十六)SpringBoot 零代码方式整合多个kafka数据源》
《搭建大型分布式服务(三十七)SpringBoot 整合多个kafka数据源-取消限定符》
《搭建大型分布式服务(三十八)SpringBoot 整合多个kafka数据源-支持protobuf》
《搭建大型分布式服务(三十九)SpringBoot 整合多个kafka数据源-支持Aware模式》
搭建大型分布式服务(四十)SpringBoot 整合多个kafka数据源-支持生产者
搭建大型分布式服务(四十一)SpringBoot 整合多个kafka数据源-支持亿级消息生产者
加我加群一起交流学习!更多干货下载、项目源码和大厂内推等着你